Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine the value of [tex]\( a \)[/tex] in the quadratic function's equation [tex]\( y = ax^2 + bx + c \)[/tex], we follow these steps:
1. Identify and list the points:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 0 & -3 \\ \hline 1 & -3.75 \\ \hline 2 & -4 \\ \hline 3 & -3.75 \\ \hline 4 & -3 \\ \hline 5 & -1.75 \\ \hline \end{array} \][/tex]
2. Calculate the first differences:
[tex]\[ \begin{aligned} \Delta_1 &= -3.75 - (-3) = -0.75 \\ \Delta_2 &= -4 - (-3.75) = -0.25 \\ \Delta_3 &= -3.75 - (-4) = 0.25 \\ \Delta_4 &= -3 - (-3.75) = 0.75 \\ \Delta_5 &= -1.75 - (-3) = 1.25 \\ \end{aligned} \][/tex]
3. Calculate the second differences:
[tex]\[ \begin{aligned} \Delta^2_1 &= -0.25 - (-0.75) = 0.5 \\ \Delta^2_2 &= 0.25 - (-0.25) = 0.5 \\ \Delta^2_3 &= 0.75 - 0.25 = 0.5 \\ \Delta^2_4 &= 1.25 - 0.75 = 0.5 \\ \end{aligned} \][/tex]
You can observe that all the second differences are constant and equal to [tex]\( 0.5 \)[/tex].
4. Find the coefficient [tex]\( a \)[/tex] from the second differences:
- For a quadratic function [tex]\( y = ax^2 + bx + c \)[/tex], the second differences are equal to [tex]\( 2a \)[/tex].
- Given that the second differences are [tex]\( 0.5 \)[/tex], we can set up the equation:
[tex]\[ 2a = 0.5 \][/tex]
- Solving for [tex]\( a \)[/tex]:
[tex]\[ a = \frac{0.5}{2} = 0.25 \][/tex]
Therefore, the value of [tex]\( a \)[/tex] in the function's equation is [tex]\( \boxed{\frac{1}{4}} \)[/tex]. Thus, the correct answer is [tex]\( \text{C.} \frac{1}{4} \)[/tex].
1. Identify and list the points:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 0 & -3 \\ \hline 1 & -3.75 \\ \hline 2 & -4 \\ \hline 3 & -3.75 \\ \hline 4 & -3 \\ \hline 5 & -1.75 \\ \hline \end{array} \][/tex]
2. Calculate the first differences:
[tex]\[ \begin{aligned} \Delta_1 &= -3.75 - (-3) = -0.75 \\ \Delta_2 &= -4 - (-3.75) = -0.25 \\ \Delta_3 &= -3.75 - (-4) = 0.25 \\ \Delta_4 &= -3 - (-3.75) = 0.75 \\ \Delta_5 &= -1.75 - (-3) = 1.25 \\ \end{aligned} \][/tex]
3. Calculate the second differences:
[tex]\[ \begin{aligned} \Delta^2_1 &= -0.25 - (-0.75) = 0.5 \\ \Delta^2_2 &= 0.25 - (-0.25) = 0.5 \\ \Delta^2_3 &= 0.75 - 0.25 = 0.5 \\ \Delta^2_4 &= 1.25 - 0.75 = 0.5 \\ \end{aligned} \][/tex]
You can observe that all the second differences are constant and equal to [tex]\( 0.5 \)[/tex].
4. Find the coefficient [tex]\( a \)[/tex] from the second differences:
- For a quadratic function [tex]\( y = ax^2 + bx + c \)[/tex], the second differences are equal to [tex]\( 2a \)[/tex].
- Given that the second differences are [tex]\( 0.5 \)[/tex], we can set up the equation:
[tex]\[ 2a = 0.5 \][/tex]
- Solving for [tex]\( a \)[/tex]:
[tex]\[ a = \frac{0.5}{2} = 0.25 \][/tex]
Therefore, the value of [tex]\( a \)[/tex] in the function's equation is [tex]\( \boxed{\frac{1}{4}} \)[/tex]. Thus, the correct answer is [tex]\( \text{C.} \frac{1}{4} \)[/tex].
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.