Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine the probability of striking the bull's-eye 3 times in a row when you have a [tex]\(\frac{1}{6}\)[/tex] chance to hit it each time, follow these steps:
1. Identify the probability of hitting the bull's-eye in a single throw:
The probability of hitting the bull's-eye with one throw is:
[tex]\[ \text{Probability} (\text{Single Throw}) = \frac{1}{6} \][/tex]
2. Calculate the probability of hitting the bull's-eye 3 times consecutively:
Since each throw is an independent event, the probability of hitting the bull's-eye 3 times in a row is the product of the probabilities of each individual throw.
[tex]\[ \text{Probability} (\text{3 Throws}) = \left( \frac{1}{6} \right) \times \left( \frac{1}{6} \right) \times \left( \frac{1}{6} \right) \][/tex]
Simplify this:
[tex]\[ \left( \frac{1}{6} \right)^3 = \frac{1}{216} \][/tex]
3. Compare the calculated probability with the given choices:
The calculated probability of hitting the bull's-eye 3 times in a row is [tex]\(\frac{1}{216}\)[/tex]. Now, compare this with the answer choices provided:
- A. [tex]\(\frac{5}{136} \approx 0.0367647\)[/tex]
- B. [tex]\(\frac{1}{210} \approx 0.0047619\)[/tex]
- C. [tex]\(\frac{3}{233} \approx 0.0128756\)[/tex]
- D. [tex]\(\frac{1}{100} = 0.01\)[/tex]
4. Identify the correct choice:
The choice that matches [tex]\(\frac{1}{216}\)[/tex] most closely is:
[tex]\[ \text{Choice B:} \frac{1}{210} \approx 0.0047619 \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{B. \frac{1}{210}} \][/tex]
1. Identify the probability of hitting the bull's-eye in a single throw:
The probability of hitting the bull's-eye with one throw is:
[tex]\[ \text{Probability} (\text{Single Throw}) = \frac{1}{6} \][/tex]
2. Calculate the probability of hitting the bull's-eye 3 times consecutively:
Since each throw is an independent event, the probability of hitting the bull's-eye 3 times in a row is the product of the probabilities of each individual throw.
[tex]\[ \text{Probability} (\text{3 Throws}) = \left( \frac{1}{6} \right) \times \left( \frac{1}{6} \right) \times \left( \frac{1}{6} \right) \][/tex]
Simplify this:
[tex]\[ \left( \frac{1}{6} \right)^3 = \frac{1}{216} \][/tex]
3. Compare the calculated probability with the given choices:
The calculated probability of hitting the bull's-eye 3 times in a row is [tex]\(\frac{1}{216}\)[/tex]. Now, compare this with the answer choices provided:
- A. [tex]\(\frac{5}{136} \approx 0.0367647\)[/tex]
- B. [tex]\(\frac{1}{210} \approx 0.0047619\)[/tex]
- C. [tex]\(\frac{3}{233} \approx 0.0128756\)[/tex]
- D. [tex]\(\frac{1}{100} = 0.01\)[/tex]
4. Identify the correct choice:
The choice that matches [tex]\(\frac{1}{216}\)[/tex] most closely is:
[tex]\[ \text{Choice B:} \frac{1}{210} \approx 0.0047619 \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{B. \frac{1}{210}} \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.