Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Sure! Let's solve the problem step-by-step:
1. Identify the Initial Dimensions:
- The initial width of the pumpkin patch is 40 meters.
- The initial length of the pumpkin patch is 60 meters.
2. Determine the New Dimensions:
- The new width will be [tex]\(40 + 3x\)[/tex] meters.
- The new length will be [tex]\(60 + 5x\)[/tex] meters.
Here, [tex]\(x\)[/tex] is a variable that represents how many meters the width and length are increased.
3. Express the Area of the New Pumpkin Patch:
- The area of a rectangle is calculated as width multiplied by length.
- So, the area [tex]\(A\)[/tex] of the new pumpkin patch will be:
[tex]\[ A = (40 + 3x) \times (60 + 5x) \][/tex]
4. Expand the Expression:
- To find the expanded form, we need to distribute the terms:
[tex]\[ (40 + 3x) \times (60 + 5x) \][/tex]
- Apply the distributive property (FOIL method):
[tex]\[ (40 \times 60) + (40 \times 5x) + (3x \times 60) + (3x \times 5x) \][/tex]
- First Term: [tex]\(40 \times 60 = 2400\)[/tex]
- Outer Term: [tex]\(40 \times 5x = 200x\)[/tex]
- Inner Term: [tex]\(3x \times 60 = 180x\)[/tex]
- Last Term: [tex]\(3x \times 5x = 15x^2\)[/tex]
- Combine all these terms:
[tex]\[ 2400 + 200x + 180x + 15x^2 \][/tex]
- Simplify by combining like terms:
[tex]\[ 2400 + (200x + 180x) + 15x^2 = 2400 + 380x + 15x^2 \][/tex]
5. Conclusion:
- The function that represents the area of the new pumpkin patch in square meters is:
[tex]\[ f(x) = 15x^2 + 380x + 2400 \][/tex]
- Therefore, the correct answer is:
[tex]\[ \boxed{A. \ f(x) = 15 x^2 + 380 x + 2400} \][/tex]
1. Identify the Initial Dimensions:
- The initial width of the pumpkin patch is 40 meters.
- The initial length of the pumpkin patch is 60 meters.
2. Determine the New Dimensions:
- The new width will be [tex]\(40 + 3x\)[/tex] meters.
- The new length will be [tex]\(60 + 5x\)[/tex] meters.
Here, [tex]\(x\)[/tex] is a variable that represents how many meters the width and length are increased.
3. Express the Area of the New Pumpkin Patch:
- The area of a rectangle is calculated as width multiplied by length.
- So, the area [tex]\(A\)[/tex] of the new pumpkin patch will be:
[tex]\[ A = (40 + 3x) \times (60 + 5x) \][/tex]
4. Expand the Expression:
- To find the expanded form, we need to distribute the terms:
[tex]\[ (40 + 3x) \times (60 + 5x) \][/tex]
- Apply the distributive property (FOIL method):
[tex]\[ (40 \times 60) + (40 \times 5x) + (3x \times 60) + (3x \times 5x) \][/tex]
- First Term: [tex]\(40 \times 60 = 2400\)[/tex]
- Outer Term: [tex]\(40 \times 5x = 200x\)[/tex]
- Inner Term: [tex]\(3x \times 60 = 180x\)[/tex]
- Last Term: [tex]\(3x \times 5x = 15x^2\)[/tex]
- Combine all these terms:
[tex]\[ 2400 + 200x + 180x + 15x^2 \][/tex]
- Simplify by combining like terms:
[tex]\[ 2400 + (200x + 180x) + 15x^2 = 2400 + 380x + 15x^2 \][/tex]
5. Conclusion:
- The function that represents the area of the new pumpkin patch in square meters is:
[tex]\[ f(x) = 15x^2 + 380x + 2400 \][/tex]
- Therefore, the correct answer is:
[tex]\[ \boxed{A. \ f(x) = 15 x^2 + 380 x + 2400} \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.