Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine the type of transformation described by the given mapping, let's carefully analyze the properties provided.
1. Property 1: Every point [tex]\(A\)[/tex] on line [tex]\(\ell\)[/tex] maps to itself.
This means that the line [tex]\(\ell\)[/tex] is invariant under the transformation. In other words, any point lying on line [tex]\(\ell\)[/tex] does not change its position after the transformation.
2. Property 2: Every point [tex]\(P\)[/tex] that isn't on [tex]\(\ell\)[/tex] maps to a point [tex]\(P'\)[/tex] such that [tex]\(\overline{PP'}\)[/tex] is the diameter of a circle centered on [tex]\(\ell\)[/tex], and [tex]\(\overline{PP'}\)[/tex] is perpendicular to [tex]\(\ell\)[/tex].
This implies that for any point [tex]\(P\)[/tex] not on [tex]\(\ell\)[/tex], the point [tex]\(P'\)[/tex], to which [tex]\(P\)[/tex] maps, must satisfy the following conditions:
- The segment [tex]\(\overline{PP'}\)[/tex] is the diameter of a circle whose center lies on the line [tex]\(\ell\)[/tex].
- The segment [tex]\(\overline{PP'}\)[/tex] is perpendicular to [tex]\(\ell\)[/tex].
Since [tex]\(P\)[/tex] and [tex]\(P'\)[/tex] form the diameter of the circle, the midpoint [tex]\(M\)[/tex] of segment [tex]\(\overline{PP'}\)[/tex] must lie on line [tex]\(\ell\)[/tex]. This indicates that [tex]\(P\)[/tex] and [tex]\(P'\)[/tex] are symmetric with respect to [tex]\(M\)[/tex], and since [tex]\(M\)[/tex] is on [tex]\(\ell\)[/tex], they are symmetric with respect to line [tex]\(\ell\)[/tex].
Considering these properties, we can see that the transformation being described maps each point to its mirror image across line [tex]\(\ell\)[/tex]. This description matches the definition of a reflection across a line.
Therefore, the transformation in question is a reflection. The correct answer is:
(B) A reflection
1. Property 1: Every point [tex]\(A\)[/tex] on line [tex]\(\ell\)[/tex] maps to itself.
This means that the line [tex]\(\ell\)[/tex] is invariant under the transformation. In other words, any point lying on line [tex]\(\ell\)[/tex] does not change its position after the transformation.
2. Property 2: Every point [tex]\(P\)[/tex] that isn't on [tex]\(\ell\)[/tex] maps to a point [tex]\(P'\)[/tex] such that [tex]\(\overline{PP'}\)[/tex] is the diameter of a circle centered on [tex]\(\ell\)[/tex], and [tex]\(\overline{PP'}\)[/tex] is perpendicular to [tex]\(\ell\)[/tex].
This implies that for any point [tex]\(P\)[/tex] not on [tex]\(\ell\)[/tex], the point [tex]\(P'\)[/tex], to which [tex]\(P\)[/tex] maps, must satisfy the following conditions:
- The segment [tex]\(\overline{PP'}\)[/tex] is the diameter of a circle whose center lies on the line [tex]\(\ell\)[/tex].
- The segment [tex]\(\overline{PP'}\)[/tex] is perpendicular to [tex]\(\ell\)[/tex].
Since [tex]\(P\)[/tex] and [tex]\(P'\)[/tex] form the diameter of the circle, the midpoint [tex]\(M\)[/tex] of segment [tex]\(\overline{PP'}\)[/tex] must lie on line [tex]\(\ell\)[/tex]. This indicates that [tex]\(P\)[/tex] and [tex]\(P'\)[/tex] are symmetric with respect to [tex]\(M\)[/tex], and since [tex]\(M\)[/tex] is on [tex]\(\ell\)[/tex], they are symmetric with respect to line [tex]\(\ell\)[/tex].
Considering these properties, we can see that the transformation being described maps each point to its mirror image across line [tex]\(\ell\)[/tex]. This description matches the definition of a reflection across a line.
Therefore, the transformation in question is a reflection. The correct answer is:
(B) A reflection
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.