Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine the type of transformation described by the given mapping, let's carefully analyze the properties provided.
1. Property 1: Every point [tex]\(A\)[/tex] on line [tex]\(\ell\)[/tex] maps to itself.
This means that the line [tex]\(\ell\)[/tex] is invariant under the transformation. In other words, any point lying on line [tex]\(\ell\)[/tex] does not change its position after the transformation.
2. Property 2: Every point [tex]\(P\)[/tex] that isn't on [tex]\(\ell\)[/tex] maps to a point [tex]\(P'\)[/tex] such that [tex]\(\overline{PP'}\)[/tex] is the diameter of a circle centered on [tex]\(\ell\)[/tex], and [tex]\(\overline{PP'}\)[/tex] is perpendicular to [tex]\(\ell\)[/tex].
This implies that for any point [tex]\(P\)[/tex] not on [tex]\(\ell\)[/tex], the point [tex]\(P'\)[/tex], to which [tex]\(P\)[/tex] maps, must satisfy the following conditions:
- The segment [tex]\(\overline{PP'}\)[/tex] is the diameter of a circle whose center lies on the line [tex]\(\ell\)[/tex].
- The segment [tex]\(\overline{PP'}\)[/tex] is perpendicular to [tex]\(\ell\)[/tex].
Since [tex]\(P\)[/tex] and [tex]\(P'\)[/tex] form the diameter of the circle, the midpoint [tex]\(M\)[/tex] of segment [tex]\(\overline{PP'}\)[/tex] must lie on line [tex]\(\ell\)[/tex]. This indicates that [tex]\(P\)[/tex] and [tex]\(P'\)[/tex] are symmetric with respect to [tex]\(M\)[/tex], and since [tex]\(M\)[/tex] is on [tex]\(\ell\)[/tex], they are symmetric with respect to line [tex]\(\ell\)[/tex].
Considering these properties, we can see that the transformation being described maps each point to its mirror image across line [tex]\(\ell\)[/tex]. This description matches the definition of a reflection across a line.
Therefore, the transformation in question is a reflection. The correct answer is:
(B) A reflection
1. Property 1: Every point [tex]\(A\)[/tex] on line [tex]\(\ell\)[/tex] maps to itself.
This means that the line [tex]\(\ell\)[/tex] is invariant under the transformation. In other words, any point lying on line [tex]\(\ell\)[/tex] does not change its position after the transformation.
2. Property 2: Every point [tex]\(P\)[/tex] that isn't on [tex]\(\ell\)[/tex] maps to a point [tex]\(P'\)[/tex] such that [tex]\(\overline{PP'}\)[/tex] is the diameter of a circle centered on [tex]\(\ell\)[/tex], and [tex]\(\overline{PP'}\)[/tex] is perpendicular to [tex]\(\ell\)[/tex].
This implies that for any point [tex]\(P\)[/tex] not on [tex]\(\ell\)[/tex], the point [tex]\(P'\)[/tex], to which [tex]\(P\)[/tex] maps, must satisfy the following conditions:
- The segment [tex]\(\overline{PP'}\)[/tex] is the diameter of a circle whose center lies on the line [tex]\(\ell\)[/tex].
- The segment [tex]\(\overline{PP'}\)[/tex] is perpendicular to [tex]\(\ell\)[/tex].
Since [tex]\(P\)[/tex] and [tex]\(P'\)[/tex] form the diameter of the circle, the midpoint [tex]\(M\)[/tex] of segment [tex]\(\overline{PP'}\)[/tex] must lie on line [tex]\(\ell\)[/tex]. This indicates that [tex]\(P\)[/tex] and [tex]\(P'\)[/tex] are symmetric with respect to [tex]\(M\)[/tex], and since [tex]\(M\)[/tex] is on [tex]\(\ell\)[/tex], they are symmetric with respect to line [tex]\(\ell\)[/tex].
Considering these properties, we can see that the transformation being described maps each point to its mirror image across line [tex]\(\ell\)[/tex]. This description matches the definition of a reflection across a line.
Therefore, the transformation in question is a reflection. The correct answer is:
(B) A reflection
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.