Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To form a balanced equation from the given half-reactions, we need to combine them in such a way that the electrons are balanced and all elements on both sides of the equation are accounted for.
The given half-reactions are:
1. [tex]\( \text{Oxidation reaction:} \)[/tex]
[tex]\[ \text{Cu} \longrightarrow \text{Cu}^{2+} + 2e^{-} \][/tex]
2. [tex]\( \text{Reduction reaction:} \)[/tex]
[tex]\[ \text{NO}_3^{-} + 2e^{-} + 2H^{+} \longrightarrow \text{NO}_2^{-} + \text{H}_2\text{O} \][/tex]
To balance these half-reactions, the electrons lost in the oxidation reaction must equal the electrons gained in the reduction reaction. In both half-reactions, 2 electrons are involved, so they already match.
Now, we can add the two half-reactions together:
[tex]\[ \text{Cu} \longrightarrow \text{Cu}^{2+} + 2e^{-} \][/tex]
[tex]\[ \text{NO}_3^{-} + 2e^{-} + 2H^{+} \longrightarrow \text{NO}_2^{-} + \text{H}_2\text{O} \][/tex]
When we add them up, the 2 electrons on the right side of the oxidation reaction and the 2 electrons on the left side of the reduction reaction cancel each other out. So we can write:
[tex]\[ \text{Cu} + \text{NO}_3^{-} + 2H^{+} \longrightarrow \text{Cu}^{2+} + \text{NO}_2^{-} + \text{H}_2\text{O} \][/tex]
This equation is now balanced with respect to all elements and charge. Consequently, the final balanced equation is:
[tex]\[ \text{Cu} + \text{NO}_3^{-} + 2H^{+} \longrightarrow \text{Cu}^{2+} + \text{NO}_2^{-} + \text{H}_2\text{O} \][/tex]
The given half-reactions are:
1. [tex]\( \text{Oxidation reaction:} \)[/tex]
[tex]\[ \text{Cu} \longrightarrow \text{Cu}^{2+} + 2e^{-} \][/tex]
2. [tex]\( \text{Reduction reaction:} \)[/tex]
[tex]\[ \text{NO}_3^{-} + 2e^{-} + 2H^{+} \longrightarrow \text{NO}_2^{-} + \text{H}_2\text{O} \][/tex]
To balance these half-reactions, the electrons lost in the oxidation reaction must equal the electrons gained in the reduction reaction. In both half-reactions, 2 electrons are involved, so they already match.
Now, we can add the two half-reactions together:
[tex]\[ \text{Cu} \longrightarrow \text{Cu}^{2+} + 2e^{-} \][/tex]
[tex]\[ \text{NO}_3^{-} + 2e^{-} + 2H^{+} \longrightarrow \text{NO}_2^{-} + \text{H}_2\text{O} \][/tex]
When we add them up, the 2 electrons on the right side of the oxidation reaction and the 2 electrons on the left side of the reduction reaction cancel each other out. So we can write:
[tex]\[ \text{Cu} + \text{NO}_3^{-} + 2H^{+} \longrightarrow \text{Cu}^{2+} + \text{NO}_2^{-} + \text{H}_2\text{O} \][/tex]
This equation is now balanced with respect to all elements and charge. Consequently, the final balanced equation is:
[tex]\[ \text{Cu} + \text{NO}_3^{-} + 2H^{+} \longrightarrow \text{Cu}^{2+} + \text{NO}_2^{-} + \text{H}_2\text{O} \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.