Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To eliminate the variable [tex]\( y \)[/tex] from the given system of equations, we can follow these steps:
Given the system of equations:
[tex]\[ \left\{\begin{array}{r} x + y - z = -3 \quad \text{(Equation 1)} \\ 7x - 6y - 3z = -35 \quad \text{(Equation 2)} \\ 2x + y - 4z = -14 \quad \text{(Equation 3)} \end{array}\right. \][/tex]
### Step 1: Eliminate [tex]\( y \)[/tex] from Equations 1 and 2
1. Multiply Equation 1 by 6:
[tex]\[ 6(x + y - z) = 6(-3) \][/tex]
This gives:
[tex]\[ 6x + 6y - 6z = -18 \quad \text{(Equation 4)} \][/tex]
2. Subtract Equation 2 from Equation 4:
[tex]\[ (6x + 6y - 6z) - (7x - 6y - 3z) = -18 - (-35) \][/tex]
Simplifying this:
[tex]\[ 6x + 6y - 6z - 7x + 6y + 3z = -18 + 35 \][/tex]
Combining like terms:
[tex]\[ -x + 12y - 3z = 17 \][/tex]
Multiplying the entire equation by [tex]\(-1\)[/tex] to simplify:
[tex]\[ x - 12y + 3z = -17 \quad \text{(Resulting Equation)} \][/tex]
### Step 2: Eliminate [tex]\( y \)[/tex] from Equations 1 and 3
1. Multiply Equation 1 by 1:
[tex]\[ 1(x + y - z) = 1(-3) \][/tex]
This gives:
[tex]\[ x + y - z = -3 \quad \text{(Equation 5)} \][/tex]
2. Subtract Equation 3 from Equation 5:
[tex]\[ (x + y - z) - (2x + y - 4z) = -3 - (-14) \][/tex]
Simplifying this:
[tex]\[ x + y - z - 2x - y + 4z = -3 + 14 \][/tex]
Combining like terms:
[tex]\[ -x + 3z = 11 \][/tex]
Multiplying the entire equation by [tex]\(-1\)[/tex] to simplify:
[tex]\[ x - 3z = -11 \quad \text{(Resulting Equation)} \][/tex]
### Summary:
- To eliminate [tex]\( y \)[/tex] from Equations 1 and 2, multiply Equation 1 by [tex]\( 6 \)[/tex].
- To eliminate [tex]\( y \)[/tex] from Equations 1 and 3, multiply Equation 1 by [tex]\( 1 \)[/tex].
The resulting equations are:
[tex]\[ \left\{ \begin{array}{l} x - 12y + 3z = -17 \\ x - 3z = -11 \end{array} \right. \][/tex]
Given the system of equations:
[tex]\[ \left\{\begin{array}{r} x + y - z = -3 \quad \text{(Equation 1)} \\ 7x - 6y - 3z = -35 \quad \text{(Equation 2)} \\ 2x + y - 4z = -14 \quad \text{(Equation 3)} \end{array}\right. \][/tex]
### Step 1: Eliminate [tex]\( y \)[/tex] from Equations 1 and 2
1. Multiply Equation 1 by 6:
[tex]\[ 6(x + y - z) = 6(-3) \][/tex]
This gives:
[tex]\[ 6x + 6y - 6z = -18 \quad \text{(Equation 4)} \][/tex]
2. Subtract Equation 2 from Equation 4:
[tex]\[ (6x + 6y - 6z) - (7x - 6y - 3z) = -18 - (-35) \][/tex]
Simplifying this:
[tex]\[ 6x + 6y - 6z - 7x + 6y + 3z = -18 + 35 \][/tex]
Combining like terms:
[tex]\[ -x + 12y - 3z = 17 \][/tex]
Multiplying the entire equation by [tex]\(-1\)[/tex] to simplify:
[tex]\[ x - 12y + 3z = -17 \quad \text{(Resulting Equation)} \][/tex]
### Step 2: Eliminate [tex]\( y \)[/tex] from Equations 1 and 3
1. Multiply Equation 1 by 1:
[tex]\[ 1(x + y - z) = 1(-3) \][/tex]
This gives:
[tex]\[ x + y - z = -3 \quad \text{(Equation 5)} \][/tex]
2. Subtract Equation 3 from Equation 5:
[tex]\[ (x + y - z) - (2x + y - 4z) = -3 - (-14) \][/tex]
Simplifying this:
[tex]\[ x + y - z - 2x - y + 4z = -3 + 14 \][/tex]
Combining like terms:
[tex]\[ -x + 3z = 11 \][/tex]
Multiplying the entire equation by [tex]\(-1\)[/tex] to simplify:
[tex]\[ x - 3z = -11 \quad \text{(Resulting Equation)} \][/tex]
### Summary:
- To eliminate [tex]\( y \)[/tex] from Equations 1 and 2, multiply Equation 1 by [tex]\( 6 \)[/tex].
- To eliminate [tex]\( y \)[/tex] from Equations 1 and 3, multiply Equation 1 by [tex]\( 1 \)[/tex].
The resulting equations are:
[tex]\[ \left\{ \begin{array}{l} x - 12y + 3z = -17 \\ x - 3z = -11 \end{array} \right. \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.