Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To find the equation of the line passing through the points [tex]\((5, -3)\)[/tex] and [tex]\((6, -1)\)[/tex], we will follow these steps:
### Step 1: Calculate the Slope (m)
The formula for the slope [tex]\(m\)[/tex] of a line passing through two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Given the points [tex]\((5, -3)\)[/tex] and [tex]\((6, -1)\)[/tex]:
[tex]\[ x_1 = 5, y_1 = -3 \][/tex]
[tex]\[ x_2 = 6, y_2 = -1 \][/tex]
Substitute these values into the slope formula:
[tex]\[ m = \frac{-1 - (-3)}{6 - 5} \][/tex]
[tex]\[ m = \frac{-1 + 3}{6 - 5} \][/tex]
[tex]\[ m = \frac{2}{1} \][/tex]
[tex]\[ m = 2 \][/tex]
### Step 2: Calculate the Y-Intercept (b)
We know the slope [tex]\(m = 2\)[/tex]. We use the slope-intercept form of the line equation [tex]\(y = mx + b\)[/tex]. To find the [tex]\(y\)[/tex]-intercept [tex]\(b\)[/tex], we can substitute one of the given points and the slope into this equation.
Using the point [tex]\((5, -3)\)[/tex]:
[tex]\[ y_1 = mx_1 + b \][/tex]
[tex]\[ -3 = 2 \cdot 5 + b \][/tex]
[tex]\[ -3 = 10 + b \][/tex]
Subtract 10 from both sides to solve for [tex]\(b\)[/tex]:
[tex]\[ -3 - 10 = b \][/tex]
[tex]\[ b = -13 \][/tex]
### Step 3: Write the Equation of the Line
We have determined the slope [tex]\(m = 2\)[/tex] and the [tex]\(y\)[/tex]-intercept [tex]\(b = -13\)[/tex]. Therefore, the equation of the line in slope-intercept form [tex]\(y = mx + b\)[/tex] is:
[tex]\[ y = 2x - 13 \][/tex]
Thus, the equation of the line that passes through the points [tex]\((5, -3)\)[/tex] and [tex]\((6, -1)\)[/tex] is:
[tex]\[ y = 2x - 13 \][/tex]
### Step 1: Calculate the Slope (m)
The formula for the slope [tex]\(m\)[/tex] of a line passing through two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Given the points [tex]\((5, -3)\)[/tex] and [tex]\((6, -1)\)[/tex]:
[tex]\[ x_1 = 5, y_1 = -3 \][/tex]
[tex]\[ x_2 = 6, y_2 = -1 \][/tex]
Substitute these values into the slope formula:
[tex]\[ m = \frac{-1 - (-3)}{6 - 5} \][/tex]
[tex]\[ m = \frac{-1 + 3}{6 - 5} \][/tex]
[tex]\[ m = \frac{2}{1} \][/tex]
[tex]\[ m = 2 \][/tex]
### Step 2: Calculate the Y-Intercept (b)
We know the slope [tex]\(m = 2\)[/tex]. We use the slope-intercept form of the line equation [tex]\(y = mx + b\)[/tex]. To find the [tex]\(y\)[/tex]-intercept [tex]\(b\)[/tex], we can substitute one of the given points and the slope into this equation.
Using the point [tex]\((5, -3)\)[/tex]:
[tex]\[ y_1 = mx_1 + b \][/tex]
[tex]\[ -3 = 2 \cdot 5 + b \][/tex]
[tex]\[ -3 = 10 + b \][/tex]
Subtract 10 from both sides to solve for [tex]\(b\)[/tex]:
[tex]\[ -3 - 10 = b \][/tex]
[tex]\[ b = -13 \][/tex]
### Step 3: Write the Equation of the Line
We have determined the slope [tex]\(m = 2\)[/tex] and the [tex]\(y\)[/tex]-intercept [tex]\(b = -13\)[/tex]. Therefore, the equation of the line in slope-intercept form [tex]\(y = mx + b\)[/tex] is:
[tex]\[ y = 2x - 13 \][/tex]
Thus, the equation of the line that passes through the points [tex]\((5, -3)\)[/tex] and [tex]\((6, -1)\)[/tex] is:
[tex]\[ y = 2x - 13 \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.