At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine which matrix is a diagonal matrix, let's first recall what defines a diagonal matrix. A matrix is diagonal if all its off-diagonal elements (i.e., the elements that are not on the main diagonal from the upper left to the lower right) are zero.
Here are the provided matrices:
1. [tex]\[\begin{pmatrix}2 & 0 & 0 \\ 0 & -42 & 0 \\ 0 & 16 & -7.5\end{pmatrix}\][/tex]
2. [tex]\[\begin{pmatrix}0 & 3.5 & -18 \\ 1 & 0 & 9 \\ 6 & -4 & 0\end{pmatrix}\][/tex]
3. [tex]\[\begin{pmatrix}-1 & 0 & 0 \\ 0 & -22 & 0 \\ 0 & 0 & 7.5\end{pmatrix}\][/tex]
4. [tex]\[\begin{pmatrix}0 & 0 & 7.5 \\ 0 & -22 & 0 \\ 5 & 0 & 0\end{pmatrix}\][/tex]
Let's check each matrix individually to see if all the off-diagonal elements are zero:
1. [tex]\[\begin{pmatrix}2 & 0 & 0 \\ 0 & -42 & 0 \\ 0 & 16 & -7.5\end{pmatrix}\][/tex]
- The off-diagonal elements are [tex]\(0, 0, 0, 16\)[/tex].
- Since one of the off-diagonal elements ([tex]\(16\)[/tex]) is not zero, this matrix is not a diagonal matrix.
2. [tex]\[\begin{pmatrix}0 & 3.5 & -18 \\ 1 & 0 & 9 \\ 6 & -4 & 0\end{pmatrix}\][/tex]
- The off-diagonal elements are [tex]\(3.5, -18, 1, 9, 6, -4\)[/tex].
- Since several off-diagonal elements are not zero, this matrix is not a diagonal matrix.
3. [tex]\[\begin{pmatrix}-1 & 0 & 0 \\ 0 & -22 & 0 \\ 0 & 0 & 7.5\end{pmatrix}\][/tex]
- The off-diagonal elements are [tex]\(0, 0, 0, 0, 0, 0\)[/tex].
- All the off-diagonal elements are zero, hence this matrix is a diagonal matrix.
4. [tex]\[\begin{pmatrix}0 & 0 & 7.5 \\ 0 & -22 & 0 \\ 5 & 0 & 0\end{pmatrix}\][/tex]
- The off-diagonal elements are [tex]\(0, 7.5, 5, 0\)[/tex].
- Since some of the off-diagonal elements ([tex]\(7.5\)[/tex], [tex]\(5\)[/tex]) are not zero, this matrix is not a diagonal matrix.
After examining all the matrices, we conclude that only the third matrix:
[tex]\[\begin{pmatrix}-1 & 0 & 0 \\ 0 & -22 & 0 \\ 0 & 0 & 7.5\end{pmatrix}\][/tex]
is a diagonal matrix.
Here are the provided matrices:
1. [tex]\[\begin{pmatrix}2 & 0 & 0 \\ 0 & -42 & 0 \\ 0 & 16 & -7.5\end{pmatrix}\][/tex]
2. [tex]\[\begin{pmatrix}0 & 3.5 & -18 \\ 1 & 0 & 9 \\ 6 & -4 & 0\end{pmatrix}\][/tex]
3. [tex]\[\begin{pmatrix}-1 & 0 & 0 \\ 0 & -22 & 0 \\ 0 & 0 & 7.5\end{pmatrix}\][/tex]
4. [tex]\[\begin{pmatrix}0 & 0 & 7.5 \\ 0 & -22 & 0 \\ 5 & 0 & 0\end{pmatrix}\][/tex]
Let's check each matrix individually to see if all the off-diagonal elements are zero:
1. [tex]\[\begin{pmatrix}2 & 0 & 0 \\ 0 & -42 & 0 \\ 0 & 16 & -7.5\end{pmatrix}\][/tex]
- The off-diagonal elements are [tex]\(0, 0, 0, 16\)[/tex].
- Since one of the off-diagonal elements ([tex]\(16\)[/tex]) is not zero, this matrix is not a diagonal matrix.
2. [tex]\[\begin{pmatrix}0 & 3.5 & -18 \\ 1 & 0 & 9 \\ 6 & -4 & 0\end{pmatrix}\][/tex]
- The off-diagonal elements are [tex]\(3.5, -18, 1, 9, 6, -4\)[/tex].
- Since several off-diagonal elements are not zero, this matrix is not a diagonal matrix.
3. [tex]\[\begin{pmatrix}-1 & 0 & 0 \\ 0 & -22 & 0 \\ 0 & 0 & 7.5\end{pmatrix}\][/tex]
- The off-diagonal elements are [tex]\(0, 0, 0, 0, 0, 0\)[/tex].
- All the off-diagonal elements are zero, hence this matrix is a diagonal matrix.
4. [tex]\[\begin{pmatrix}0 & 0 & 7.5 \\ 0 & -22 & 0 \\ 5 & 0 & 0\end{pmatrix}\][/tex]
- The off-diagonal elements are [tex]\(0, 7.5, 5, 0\)[/tex].
- Since some of the off-diagonal elements ([tex]\(7.5\)[/tex], [tex]\(5\)[/tex]) are not zero, this matrix is not a diagonal matrix.
After examining all the matrices, we conclude that only the third matrix:
[tex]\[\begin{pmatrix}-1 & 0 & 0 \\ 0 & -22 & 0 \\ 0 & 0 & 7.5\end{pmatrix}\][/tex]
is a diagonal matrix.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.