Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine which row of Pascal's triangle will be used for expanding the given binomial expression [tex]\(\left(2x^3 + 3y^2\right)^7\)[/tex], follow these steps:
1. Understand the Binomial Theorem: The Binomial Theorem states that [tex]\((a + b)^n\)[/tex] can be expanded as:
[tex]\[ (a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \][/tex]
Here, [tex]\(\binom{n}{k}\)[/tex] are the binomial coefficients.
2. Identify [tex]\( n \)[/tex] in the Expression: In the given binomial expression [tex]\(\left(2x^3 + 3y^2\right)^7\)[/tex], we see that the exponent [tex]\( n \)[/tex] is 7. This means we need the 7th row of Pascal’s triangle.
3. Pascal's Triangle and Row Identification: Pascal's triangle is constructed with each row representing the coefficients of the expanded form of [tex]\((a + b)^n\)[/tex]. The [tex]\( n \)[/tex]-th row (starting with [tex]\( n = 0 \)[/tex] for the top row) contains the binomial coefficients [tex]\(\binom{n}{k}\)[/tex] for [tex]\( k = 0 \)[/tex] to [tex]\( k = n \)[/tex].
4. Retrieve the Correct Row: Specifically, the 7th row of Pascal's triangle gives us the coefficients for [tex]\((a + b)^7\)[/tex]. The 7th row of Pascal’s triangle is:
[tex]\[ [1, 7, 21, 35, 35, 21, 7, 1] \][/tex]
Hence, for expanding the binomial expression [tex]\(\left(2 x^3 + 3 y^2\right)^7\)[/tex], the row of Pascal's triangle that will be used is the 7th row comprising the coefficients [tex]\([1, 7, 21, 35, 35, 21, 7, 1]\)[/tex].
1. Understand the Binomial Theorem: The Binomial Theorem states that [tex]\((a + b)^n\)[/tex] can be expanded as:
[tex]\[ (a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \][/tex]
Here, [tex]\(\binom{n}{k}\)[/tex] are the binomial coefficients.
2. Identify [tex]\( n \)[/tex] in the Expression: In the given binomial expression [tex]\(\left(2x^3 + 3y^2\right)^7\)[/tex], we see that the exponent [tex]\( n \)[/tex] is 7. This means we need the 7th row of Pascal’s triangle.
3. Pascal's Triangle and Row Identification: Pascal's triangle is constructed with each row representing the coefficients of the expanded form of [tex]\((a + b)^n\)[/tex]. The [tex]\( n \)[/tex]-th row (starting with [tex]\( n = 0 \)[/tex] for the top row) contains the binomial coefficients [tex]\(\binom{n}{k}\)[/tex] for [tex]\( k = 0 \)[/tex] to [tex]\( k = n \)[/tex].
4. Retrieve the Correct Row: Specifically, the 7th row of Pascal's triangle gives us the coefficients for [tex]\((a + b)^7\)[/tex]. The 7th row of Pascal’s triangle is:
[tex]\[ [1, 7, 21, 35, 35, 21, 7, 1] \][/tex]
Hence, for expanding the binomial expression [tex]\(\left(2 x^3 + 3 y^2\right)^7\)[/tex], the row of Pascal's triangle that will be used is the 7th row comprising the coefficients [tex]\([1, 7, 21, 35, 35, 21, 7, 1]\)[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.