Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Certainly! Let's solve the inequality step-by-step and then graph the solution on a number line.
### Step-By-Step Solution
1. Distribute the -2 on the left side:
[tex]\[ -2(x + 6) > -4x \][/tex]
This simplifies to:
[tex]\[ -2x - 12 > -4x \][/tex]
2. Move all x terms to one side of the inequality:
Add [tex]\(4x\)[/tex] to both sides:
[tex]\[ -2x + 4x - 12 > -4x + 4x \][/tex]
Which simplifies to:
[tex]\[ 2x - 12 > 0 \][/tex]
3. Isolate the x variable:
Add 12 to both sides:
[tex]\[ 2x - 12 + 12 > 0 + 12 \][/tex]
This results in:
[tex]\[ 2x > 12 \][/tex]
4. Solve for x:
Divide both sides by 2:
[tex]\[ \frac{2x}{2} > \frac{12}{2} \][/tex]
Which simplifies to:
[tex]\[ x > 6 \][/tex]
### Graphing the Solution on the Number Line
The solution to the inequality [tex]\(x > 6\)[/tex] means all numbers greater than 6. Here is how you can represent this solution on a number line:
1. Draw a number line:
Draw a horizontal line and mark a point at 6 on this line.
2. Open circle at 6:
Place an open circle (not filled) at the point 6 to indicate that 6 is not included in the solution set.
3. Shade to the right of the open circle:
Draw a ray starting at the open circle and extending to the right to indicate all numbers greater than 6 are included in the solution set.
Here is the graph representation:
[tex]\[ \begin{array}{c|ccccccccccc} \text{Number Line} & \cdots & 4 & 5 & \mathbf{6} & 7 & 8 & 9 & 10 & \cdots \\ \hline \text{Solution} & \cdots & & & \circ & \rightarrow & & & & \cdots \end{array} \][/tex]
### Explanation of the Graph Representation
- The open circle at 6 signifies that 6 is not part of the solution [tex]\( (x > 6) \)[/tex].
- The arrow points right from 6, indicating all numbers greater than 6 are part of the solution set.
So, the solution set for the inequality [tex]\(-2(x + 6) > -4x\)[/tex] is [tex]\( x > 6 \)[/tex], and it is graphically represented on the number line as shown above.
### Step-By-Step Solution
1. Distribute the -2 on the left side:
[tex]\[ -2(x + 6) > -4x \][/tex]
This simplifies to:
[tex]\[ -2x - 12 > -4x \][/tex]
2. Move all x terms to one side of the inequality:
Add [tex]\(4x\)[/tex] to both sides:
[tex]\[ -2x + 4x - 12 > -4x + 4x \][/tex]
Which simplifies to:
[tex]\[ 2x - 12 > 0 \][/tex]
3. Isolate the x variable:
Add 12 to both sides:
[tex]\[ 2x - 12 + 12 > 0 + 12 \][/tex]
This results in:
[tex]\[ 2x > 12 \][/tex]
4. Solve for x:
Divide both sides by 2:
[tex]\[ \frac{2x}{2} > \frac{12}{2} \][/tex]
Which simplifies to:
[tex]\[ x > 6 \][/tex]
### Graphing the Solution on the Number Line
The solution to the inequality [tex]\(x > 6\)[/tex] means all numbers greater than 6. Here is how you can represent this solution on a number line:
1. Draw a number line:
Draw a horizontal line and mark a point at 6 on this line.
2. Open circle at 6:
Place an open circle (not filled) at the point 6 to indicate that 6 is not included in the solution set.
3. Shade to the right of the open circle:
Draw a ray starting at the open circle and extending to the right to indicate all numbers greater than 6 are included in the solution set.
Here is the graph representation:
[tex]\[ \begin{array}{c|ccccccccccc} \text{Number Line} & \cdots & 4 & 5 & \mathbf{6} & 7 & 8 & 9 & 10 & \cdots \\ \hline \text{Solution} & \cdots & & & \circ & \rightarrow & & & & \cdots \end{array} \][/tex]
### Explanation of the Graph Representation
- The open circle at 6 signifies that 6 is not part of the solution [tex]\( (x > 6) \)[/tex].
- The arrow points right from 6, indicating all numbers greater than 6 are part of the solution set.
So, the solution set for the inequality [tex]\(-2(x + 6) > -4x\)[/tex] is [tex]\( x > 6 \)[/tex], and it is graphically represented on the number line as shown above.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.