Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine which term of the arithmetic series [tex]\(5, 9, 13, \ldots\)[/tex] is equal to 85, we need to use the formula for the [tex]\(n\)[/tex]-th term of an arithmetic series. The formula is given by:
[tex]\[ a_n = a + (n-1) \cdot d \][/tex]
Here:
- [tex]\(a\)[/tex] is the first term of the series.
- [tex]\(d\)[/tex] is the common difference between the terms.
- [tex]\(a_n\)[/tex] is the [tex]\(n\)[/tex]-th term that we need to find.
Given the series [tex]\(5, 9, 13, \ldots\)[/tex]:
- The first term [tex]\(a = 5\)[/tex].
- The common difference [tex]\(d = 9 - 5 = 4\)[/tex].
- We need to find the term number [tex]\(n\)[/tex] such that [tex]\(a_n = 85\)[/tex].
Substitute the known values into the formula:
[tex]\[ 85 = 5 + (n-1) \cdot 4 \][/tex]
Now, solve for [tex]\(n\)[/tex]:
1. Subtract 5 from both sides:
[tex]\[ 85 - 5 = (n-1) \cdot 4 \][/tex]
[tex]\[ 80 = (n-1) \cdot 4 \][/tex]
2. Divide both sides by 4:
[tex]\[ \frac{80}{4} = n-1 \][/tex]
[tex]\[ 20 = n-1 \][/tex]
3. Add 1 to both sides:
[tex]\[ 20 + 1 = n \][/tex]
[tex]\[ n = 21 \][/tex]
Therefore, the 21st term of the series is 85.
[tex]\[ a_n = a + (n-1) \cdot d \][/tex]
Here:
- [tex]\(a\)[/tex] is the first term of the series.
- [tex]\(d\)[/tex] is the common difference between the terms.
- [tex]\(a_n\)[/tex] is the [tex]\(n\)[/tex]-th term that we need to find.
Given the series [tex]\(5, 9, 13, \ldots\)[/tex]:
- The first term [tex]\(a = 5\)[/tex].
- The common difference [tex]\(d = 9 - 5 = 4\)[/tex].
- We need to find the term number [tex]\(n\)[/tex] such that [tex]\(a_n = 85\)[/tex].
Substitute the known values into the formula:
[tex]\[ 85 = 5 + (n-1) \cdot 4 \][/tex]
Now, solve for [tex]\(n\)[/tex]:
1. Subtract 5 from both sides:
[tex]\[ 85 - 5 = (n-1) \cdot 4 \][/tex]
[tex]\[ 80 = (n-1) \cdot 4 \][/tex]
2. Divide both sides by 4:
[tex]\[ \frac{80}{4} = n-1 \][/tex]
[tex]\[ 20 = n-1 \][/tex]
3. Add 1 to both sides:
[tex]\[ 20 + 1 = n \][/tex]
[tex]\[ n = 21 \][/tex]
Therefore, the 21st term of the series is 85.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.