Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine which term of the arithmetic series [tex]\(5, 9, 13, \ldots\)[/tex] is equal to 85, we need to use the formula for the [tex]\(n\)[/tex]-th term of an arithmetic series. The formula is given by:
[tex]\[ a_n = a + (n-1) \cdot d \][/tex]
Here:
- [tex]\(a\)[/tex] is the first term of the series.
- [tex]\(d\)[/tex] is the common difference between the terms.
- [tex]\(a_n\)[/tex] is the [tex]\(n\)[/tex]-th term that we need to find.
Given the series [tex]\(5, 9, 13, \ldots\)[/tex]:
- The first term [tex]\(a = 5\)[/tex].
- The common difference [tex]\(d = 9 - 5 = 4\)[/tex].
- We need to find the term number [tex]\(n\)[/tex] such that [tex]\(a_n = 85\)[/tex].
Substitute the known values into the formula:
[tex]\[ 85 = 5 + (n-1) \cdot 4 \][/tex]
Now, solve for [tex]\(n\)[/tex]:
1. Subtract 5 from both sides:
[tex]\[ 85 - 5 = (n-1) \cdot 4 \][/tex]
[tex]\[ 80 = (n-1) \cdot 4 \][/tex]
2. Divide both sides by 4:
[tex]\[ \frac{80}{4} = n-1 \][/tex]
[tex]\[ 20 = n-1 \][/tex]
3. Add 1 to both sides:
[tex]\[ 20 + 1 = n \][/tex]
[tex]\[ n = 21 \][/tex]
Therefore, the 21st term of the series is 85.
[tex]\[ a_n = a + (n-1) \cdot d \][/tex]
Here:
- [tex]\(a\)[/tex] is the first term of the series.
- [tex]\(d\)[/tex] is the common difference between the terms.
- [tex]\(a_n\)[/tex] is the [tex]\(n\)[/tex]-th term that we need to find.
Given the series [tex]\(5, 9, 13, \ldots\)[/tex]:
- The first term [tex]\(a = 5\)[/tex].
- The common difference [tex]\(d = 9 - 5 = 4\)[/tex].
- We need to find the term number [tex]\(n\)[/tex] such that [tex]\(a_n = 85\)[/tex].
Substitute the known values into the formula:
[tex]\[ 85 = 5 + (n-1) \cdot 4 \][/tex]
Now, solve for [tex]\(n\)[/tex]:
1. Subtract 5 from both sides:
[tex]\[ 85 - 5 = (n-1) \cdot 4 \][/tex]
[tex]\[ 80 = (n-1) \cdot 4 \][/tex]
2. Divide both sides by 4:
[tex]\[ \frac{80}{4} = n-1 \][/tex]
[tex]\[ 20 = n-1 \][/tex]
3. Add 1 to both sides:
[tex]\[ 20 + 1 = n \][/tex]
[tex]\[ n = 21 \][/tex]
Therefore, the 21st term of the series is 85.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.