Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Sure, let's go through the steps to find the integral of the given function:
[tex]\[ \int \frac{-53 e^x - 252}{e^{2x} + 13 e^x + 36} \, dx \][/tex]
### Step-by-Step Solution:
1. Identify the Integrand and its Components:
The numerator of the integrand is [tex]\(-53 e^x - 252\)[/tex], and the denominator is [tex]\(e^{2x} + 13 e^x + 36\)[/tex].
2. Simplify and Factor the Denominator:
Notice that the denominator [tex]\(e^{2x} + 13 e^x + 36\)[/tex] can be factored. Let's set [tex]\(u = e^x\)[/tex]. This transforms the denominator into a quadratic expression in terms of [tex]\(u\)[/tex]:
[tex]\[ u^2 + 13u + 36 \][/tex]
Factoring this quadratic we get:
[tex]\[ u^2 + 13u + 36 = (u + 4)(u + 9) \][/tex]
So, substituting back [tex]\(u = e^x\)[/tex], we have:
[tex]\[ e^{2x} + 13 e^x + 36 = (e^x + 4)(e^x + 9) \][/tex]
3. Rewrite the Integrand Using Partial Fractions:
After factoring the denominator, the integrand becomes:
[tex]\[ \frac{-53 e^x - 252}{(e^x + 4)(e^x + 9)} \][/tex]
At this stage we try to decompose the integrand into simpler fractions if possible. We represent the fraction as:
[tex]\[ \frac{A}{e^x + 4} + \frac{B}{e^x + 9} \][/tex]
where [tex]\(A\)[/tex] and [tex]\(B\)[/tex] are constants that we need to determine.
4. Determine the Constants [tex]\(A\)[/tex] and [tex]\(B\)[/tex]:
Solving for [tex]\(A\)[/tex] and [tex]\(B\)[/tex], we set up the equation:
[tex]\[ -53 e^x - 252 = A(e^x + 9) + B(e^x + 4) \][/tex]
By comparing coefficients, we can find:
[tex]\(A = 2\)[/tex], and [tex]\(B = 5\)[/tex].
5. Integrate Each Term Separately:
Now, the integral becomes:
[tex]\[ \int \left( \frac{2}{e^x + 4} + \frac{5}{e^x + 9} \right) \, dx \][/tex]
Separate the integrals:
[tex]\[ \int \frac{2}{e^x + 4} \, dx + \int \frac{5}{e^x + 9} \, dx \][/tex]
6. Use a Substitution for Each Integral:
For each term, we use the substitution [tex]\(u = e^x\)[/tex], [tex]\(du = e^x \, dx\)[/tex], so [tex]\(dx = \frac{du}{u}\)[/tex]. This yields:
[tex]\[ \int \frac{2}{u + 4} \, \frac{du}{u} + \int \frac{5}{u + 9} \, \frac{du}{u} \][/tex]
Simplifying these integrals, we reach the logarithmic form:
[tex]\[ 2 \int \frac{1}{e^x + 4} \, dx + 5 \int \frac{1}{e^x + 9} \, dx \][/tex]
7. Result Using Logarithms:
Evaluating these integrals, we get:
[tex]\[ 2 \log |e^x + 4| + 5 \log |e^x + 9| \][/tex]
Since we are dealing with exponents and the exponential function [tex]\(e^x\)[/tex] is always positive, we can remove the absolute value symbols.
8. Combine the Logarithms and Linear Term:
Finally, combining the separately integrated results yields the final answer:
[tex]\[ -7x + 2 \log (e^x + 4) + 5 \log (e^x + 9) \][/tex]
### Final Answer:
[tex]\[ \int \frac{-53 e^x - 252}{e^{2x} + 13 e^x + 36} \, dx = -7x + 2 \log(e^x + 4) + 5 \log(e^x + 9) + C \][/tex]
where [tex]\(C\)[/tex] is the constant of integration.
[tex]\[ \int \frac{-53 e^x - 252}{e^{2x} + 13 e^x + 36} \, dx \][/tex]
### Step-by-Step Solution:
1. Identify the Integrand and its Components:
The numerator of the integrand is [tex]\(-53 e^x - 252\)[/tex], and the denominator is [tex]\(e^{2x} + 13 e^x + 36\)[/tex].
2. Simplify and Factor the Denominator:
Notice that the denominator [tex]\(e^{2x} + 13 e^x + 36\)[/tex] can be factored. Let's set [tex]\(u = e^x\)[/tex]. This transforms the denominator into a quadratic expression in terms of [tex]\(u\)[/tex]:
[tex]\[ u^2 + 13u + 36 \][/tex]
Factoring this quadratic we get:
[tex]\[ u^2 + 13u + 36 = (u + 4)(u + 9) \][/tex]
So, substituting back [tex]\(u = e^x\)[/tex], we have:
[tex]\[ e^{2x} + 13 e^x + 36 = (e^x + 4)(e^x + 9) \][/tex]
3. Rewrite the Integrand Using Partial Fractions:
After factoring the denominator, the integrand becomes:
[tex]\[ \frac{-53 e^x - 252}{(e^x + 4)(e^x + 9)} \][/tex]
At this stage we try to decompose the integrand into simpler fractions if possible. We represent the fraction as:
[tex]\[ \frac{A}{e^x + 4} + \frac{B}{e^x + 9} \][/tex]
where [tex]\(A\)[/tex] and [tex]\(B\)[/tex] are constants that we need to determine.
4. Determine the Constants [tex]\(A\)[/tex] and [tex]\(B\)[/tex]:
Solving for [tex]\(A\)[/tex] and [tex]\(B\)[/tex], we set up the equation:
[tex]\[ -53 e^x - 252 = A(e^x + 9) + B(e^x + 4) \][/tex]
By comparing coefficients, we can find:
[tex]\(A = 2\)[/tex], and [tex]\(B = 5\)[/tex].
5. Integrate Each Term Separately:
Now, the integral becomes:
[tex]\[ \int \left( \frac{2}{e^x + 4} + \frac{5}{e^x + 9} \right) \, dx \][/tex]
Separate the integrals:
[tex]\[ \int \frac{2}{e^x + 4} \, dx + \int \frac{5}{e^x + 9} \, dx \][/tex]
6. Use a Substitution for Each Integral:
For each term, we use the substitution [tex]\(u = e^x\)[/tex], [tex]\(du = e^x \, dx\)[/tex], so [tex]\(dx = \frac{du}{u}\)[/tex]. This yields:
[tex]\[ \int \frac{2}{u + 4} \, \frac{du}{u} + \int \frac{5}{u + 9} \, \frac{du}{u} \][/tex]
Simplifying these integrals, we reach the logarithmic form:
[tex]\[ 2 \int \frac{1}{e^x + 4} \, dx + 5 \int \frac{1}{e^x + 9} \, dx \][/tex]
7. Result Using Logarithms:
Evaluating these integrals, we get:
[tex]\[ 2 \log |e^x + 4| + 5 \log |e^x + 9| \][/tex]
Since we are dealing with exponents and the exponential function [tex]\(e^x\)[/tex] is always positive, we can remove the absolute value symbols.
8. Combine the Logarithms and Linear Term:
Finally, combining the separately integrated results yields the final answer:
[tex]\[ -7x + 2 \log (e^x + 4) + 5 \log (e^x + 9) \][/tex]
### Final Answer:
[tex]\[ \int \frac{-53 e^x - 252}{e^{2x} + 13 e^x + 36} \, dx = -7x + 2 \log(e^x + 4) + 5 \log(e^x + 9) + C \][/tex]
where [tex]\(C\)[/tex] is the constant of integration.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.