Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To find the amount of the radioactive substance uranium-240 remaining after a certain number of hours, we use the given exponential decay formula:
[tex]\[ A(t) = 3900 \left( \frac{1}{2} \right)^{\frac{t}{14}} \][/tex]
We need to calculate the amount remaining after two different time periods: 11 hours and 60 hours.
### Step-by-Step Solution
1. Amount remaining after 11 hours:
First, we substitute [tex]\( t = 11 \)[/tex] into the formula:
[tex]\[ A(11) = 3900 \left( \frac{1}{2} \right)^{\frac{11}{14}} \][/tex]
Evaluate the exponent:
[tex]\[ \frac{11}{14} \approx 0.7857 \][/tex]
Now, calculate the base raised to this power:
[tex]\[ \left( \frac{1}{2} \right)^{\frac{11}{14}} \approx 0.5808 \][/tex]
Finally, multiply this by the initial amount (3900 grams):
[tex]\[ A(11) = 3900 \times 0.5808 \approx 2262 \][/tex]
So, the amount of the sample remaining after 11 hours is approximately 2262 grams.
2. Amount remaining after 60 hours:
Now, substitute [tex]\( t = 60 \)[/tex] into the formula:
[tex]\[ A(60) = 3900 \left( \frac{1}{2} \right)^{\frac{60}{14}} \][/tex]
Evaluate the exponent:
[tex]\[ \frac{60}{14} \approx 4.2857 \][/tex]
Next, calculate the base raised to this power:
[tex]\[ \left( \frac{1}{2} \right)^{4.2857} \approx 0.0513 \][/tex]
Multiply this by the initial amount (3900 grams):
[tex]\[ A(60) = 3900 \times 0.0513 \approx 200 \][/tex]
So, the amount of the sample remaining after 60 hours is approximately 200 grams.
### Answers
- Amount after 11 hours: [tex]\( 2262 \)[/tex] grams
- Amount after 60 hours: [tex]\( 200 \)[/tex] grams
These rounded values provide the solution to the given problem regarding the remaining amount of uranium-240.
[tex]\[ A(t) = 3900 \left( \frac{1}{2} \right)^{\frac{t}{14}} \][/tex]
We need to calculate the amount remaining after two different time periods: 11 hours and 60 hours.
### Step-by-Step Solution
1. Amount remaining after 11 hours:
First, we substitute [tex]\( t = 11 \)[/tex] into the formula:
[tex]\[ A(11) = 3900 \left( \frac{1}{2} \right)^{\frac{11}{14}} \][/tex]
Evaluate the exponent:
[tex]\[ \frac{11}{14} \approx 0.7857 \][/tex]
Now, calculate the base raised to this power:
[tex]\[ \left( \frac{1}{2} \right)^{\frac{11}{14}} \approx 0.5808 \][/tex]
Finally, multiply this by the initial amount (3900 grams):
[tex]\[ A(11) = 3900 \times 0.5808 \approx 2262 \][/tex]
So, the amount of the sample remaining after 11 hours is approximately 2262 grams.
2. Amount remaining after 60 hours:
Now, substitute [tex]\( t = 60 \)[/tex] into the formula:
[tex]\[ A(60) = 3900 \left( \frac{1}{2} \right)^{\frac{60}{14}} \][/tex]
Evaluate the exponent:
[tex]\[ \frac{60}{14} \approx 4.2857 \][/tex]
Next, calculate the base raised to this power:
[tex]\[ \left( \frac{1}{2} \right)^{4.2857} \approx 0.0513 \][/tex]
Multiply this by the initial amount (3900 grams):
[tex]\[ A(60) = 3900 \times 0.0513 \approx 200 \][/tex]
So, the amount of the sample remaining after 60 hours is approximately 200 grams.
### Answers
- Amount after 11 hours: [tex]\( 2262 \)[/tex] grams
- Amount after 60 hours: [tex]\( 200 \)[/tex] grams
These rounded values provide the solution to the given problem regarding the remaining amount of uranium-240.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.