Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Sure, let's solve this problem step by step using the given mathematical function.
The population size [tex]\( P(t) \)[/tex] of the species is defined by the function:
[tex]\[ P(t) = \frac{1500}{1 + 3e^{-0.34t}} \][/tex]
To find the population size after 4 years and 7 years, we simply need to substitute [tex]\( t = 4 \)[/tex] and [tex]\( t = 7 \)[/tex] into this function and evaluate the results.
### Step 1: Calculate the population size after 4 years
Substitute [tex]\( t = 4 \)[/tex] into the function:
[tex]\[ P(4) = \frac{1500}{1 + 3e^{-0.34 \cdot 4}} \][/tex]
First, calculate the exponent part:
[tex]\[ -0.34 \cdot 4 = -1.36 \][/tex]
Now, find [tex]\( e^{-1.36} \)[/tex].
After calculating the value of [tex]\( e^{-1.36} \)[/tex], you will have a number that you'll plug back into the function:
[tex]\[ P(4) = \frac{1500}{1 + 3 \cdot e^{-1.36}} \][/tex]
Now, simplify the denominator:
[tex]\[ P(4) = \frac{1500}{1 + (3 \cdot \text{some value from } e^{-1.36})} \][/tex]
Finally, evaluate this expression to find the population size after 4 years. Rounding the result to the nearest whole number, we get:
[tex]\[ P(4) \approx 847 \][/tex]
### Step 2: Calculate the population size after 7 years
Substitute [tex]\( t = 7 \)[/tex] into the function:
[tex]\[ P(7) = \frac{1500}{1 + 3e^{-0.34 \cdot 7}} \][/tex]
First, calculate the exponent part:
[tex]\[ -0.34 \cdot 7 = -2.38 \][/tex]
Now, find [tex]\( e^{-2.38} \)[/tex].
After calculating the value of [tex]\( e^{-2.38} \)[/tex], you will have a number that you'll plug back into the function:
[tex]\[ P(7) = \frac{1500}{1 + 3 \cdot e^{-2.38}} \][/tex]
Now, simplify the denominator:
[tex]\[ P(7) = \frac{1500}{1 + (3 \cdot \text{some value from } e^{-2.38})} \][/tex]
Finally, evaluate this expression to find the population size after 7 years. Rounding the result to the nearest whole number, we get:
[tex]\[ P(7) \approx 1174 \][/tex]
### Final Population Sizes
The population size after 4 years is approximately:
[tex]\[ \boxed{847} \, \text{fish} \][/tex]
The population size after 7 years is approximately:
[tex]\[ \boxed{1174} \, \text{fish} \][/tex]
The population size [tex]\( P(t) \)[/tex] of the species is defined by the function:
[tex]\[ P(t) = \frac{1500}{1 + 3e^{-0.34t}} \][/tex]
To find the population size after 4 years and 7 years, we simply need to substitute [tex]\( t = 4 \)[/tex] and [tex]\( t = 7 \)[/tex] into this function and evaluate the results.
### Step 1: Calculate the population size after 4 years
Substitute [tex]\( t = 4 \)[/tex] into the function:
[tex]\[ P(4) = \frac{1500}{1 + 3e^{-0.34 \cdot 4}} \][/tex]
First, calculate the exponent part:
[tex]\[ -0.34 \cdot 4 = -1.36 \][/tex]
Now, find [tex]\( e^{-1.36} \)[/tex].
After calculating the value of [tex]\( e^{-1.36} \)[/tex], you will have a number that you'll plug back into the function:
[tex]\[ P(4) = \frac{1500}{1 + 3 \cdot e^{-1.36}} \][/tex]
Now, simplify the denominator:
[tex]\[ P(4) = \frac{1500}{1 + (3 \cdot \text{some value from } e^{-1.36})} \][/tex]
Finally, evaluate this expression to find the population size after 4 years. Rounding the result to the nearest whole number, we get:
[tex]\[ P(4) \approx 847 \][/tex]
### Step 2: Calculate the population size after 7 years
Substitute [tex]\( t = 7 \)[/tex] into the function:
[tex]\[ P(7) = \frac{1500}{1 + 3e^{-0.34 \cdot 7}} \][/tex]
First, calculate the exponent part:
[tex]\[ -0.34 \cdot 7 = -2.38 \][/tex]
Now, find [tex]\( e^{-2.38} \)[/tex].
After calculating the value of [tex]\( e^{-2.38} \)[/tex], you will have a number that you'll plug back into the function:
[tex]\[ P(7) = \frac{1500}{1 + 3 \cdot e^{-2.38}} \][/tex]
Now, simplify the denominator:
[tex]\[ P(7) = \frac{1500}{1 + (3 \cdot \text{some value from } e^{-2.38})} \][/tex]
Finally, evaluate this expression to find the population size after 7 years. Rounding the result to the nearest whole number, we get:
[tex]\[ P(7) \approx 1174 \][/tex]
### Final Population Sizes
The population size after 4 years is approximately:
[tex]\[ \boxed{847} \, \text{fish} \][/tex]
The population size after 7 years is approximately:
[tex]\[ \boxed{1174} \, \text{fish} \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.