Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To find the inverse function [tex]\( f^{-1}(x) \)[/tex] of the given function [tex]\( f(x) = x^3 - 7 \)[/tex], we need to follow several steps to express [tex]\( x \)[/tex] in terms of [tex]\( y \)[/tex] where [tex]\( y = f(x) \)[/tex]. Here is the step-by-step process:
1. Start with the function definition:
[tex]\[ y = f(x) = x^3 - 7 \][/tex]
2. Switch the roles of [tex]\( y \)[/tex] and [tex]\( x \)[/tex] to find the inverse:
[tex]\[ x = y^3 - 7 \][/tex]
3. Isolate the term containing [tex]\( y \)[/tex]:
[tex]\[ y = x^3 - 7 \][/tex]
4. Solve for [tex]\( y \)[/tex]:
- Add 7 to both sides:
[tex]\[ y + 7 = x^3 \][/tex]
5. Take the cube root of both sides to solve for [tex]\( x \)[/tex]:
[tex]\[ x = \sqrt[3]{y + 7} \][/tex]
6. Rewrite [tex]\( x \)[/tex] in terms of [tex]\( y \)[/tex] to get the inverse function:
[tex]\[ x = \sqrt[3]{y + 7} \][/tex]
Now, replacing [tex]\( y \)[/tex] back with [tex]\( x \)[/tex], we have the inverse function [tex]\( f^{-1}(x) \)[/tex]:
[tex]\[ f^{-1}(x) = (x + 7)^{1/3} \][/tex]
Thus, the inverse function is:
[tex]\[ f^{-1}(x) = (x + 7)^{1/3} \][/tex]
1. Start with the function definition:
[tex]\[ y = f(x) = x^3 - 7 \][/tex]
2. Switch the roles of [tex]\( y \)[/tex] and [tex]\( x \)[/tex] to find the inverse:
[tex]\[ x = y^3 - 7 \][/tex]
3. Isolate the term containing [tex]\( y \)[/tex]:
[tex]\[ y = x^3 - 7 \][/tex]
4. Solve for [tex]\( y \)[/tex]:
- Add 7 to both sides:
[tex]\[ y + 7 = x^3 \][/tex]
5. Take the cube root of both sides to solve for [tex]\( x \)[/tex]:
[tex]\[ x = \sqrt[3]{y + 7} \][/tex]
6. Rewrite [tex]\( x \)[/tex] in terms of [tex]\( y \)[/tex] to get the inverse function:
[tex]\[ x = \sqrt[3]{y + 7} \][/tex]
Now, replacing [tex]\( y \)[/tex] back with [tex]\( x \)[/tex], we have the inverse function [tex]\( f^{-1}(x) \)[/tex]:
[tex]\[ f^{-1}(x) = (x + 7)^{1/3} \][/tex]
Thus, the inverse function is:
[tex]\[ f^{-1}(x) = (x + 7)^{1/3} \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.