Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To find the range of the quadratic function [tex]\( f(x) = 2x^2 + 4x \)[/tex], we need to determine the minimum value of the function and understand its behavior at [tex]\( \pm \infty \)[/tex].
1. Identify the coefficients: The given function is of the form [tex]\( f(x) = ax^2 + bx + c \)[/tex]. Here, [tex]\( a = 2 \)[/tex], [tex]\( b = 4 \)[/tex], and [tex]\( c = 0 \)[/tex].
2. Find the vertex: For a quadratic function [tex]\( f(x) = ax^2 + bx + c \)[/tex], the vertex occurs at [tex]\( x = -\frac{b}{2a} \)[/tex].
[tex]\[ x = -\frac{4}{2(2)} = -\frac{4}{4} = -1 \][/tex]
3. Evaluate the function at the vertex: Substitute [tex]\( x = -1 \)[/tex] back into the function to find the [tex]\( y \)[/tex]-value (the minimum value of the function).
[tex]\[ f(-1) = 2(-1)^2 + 4(-1) = 2(1) - 4 = 2 - 4 = -2 \][/tex]
4. Determine the direction of the parabola: Since [tex]\( a = 2 \)[/tex] (which is positive), the parabola opens upwards. This means the function has a minimum value at the vertex and increases without bound as [tex]\( x \)[/tex] moves away from the vertex in both directions.
5. State the range: Because the minimum value of the function is [tex]\( -2 \)[/tex] and it opens upwards indefinitely, the range of [tex]\( f(x) \)[/tex] is all real numbers greater than or equal to [tex]\(-2\)[/tex].
Using interval notation, the range is:
[tex]\[ [-2, \infty) \][/tex]
1. Identify the coefficients: The given function is of the form [tex]\( f(x) = ax^2 + bx + c \)[/tex]. Here, [tex]\( a = 2 \)[/tex], [tex]\( b = 4 \)[/tex], and [tex]\( c = 0 \)[/tex].
2. Find the vertex: For a quadratic function [tex]\( f(x) = ax^2 + bx + c \)[/tex], the vertex occurs at [tex]\( x = -\frac{b}{2a} \)[/tex].
[tex]\[ x = -\frac{4}{2(2)} = -\frac{4}{4} = -1 \][/tex]
3. Evaluate the function at the vertex: Substitute [tex]\( x = -1 \)[/tex] back into the function to find the [tex]\( y \)[/tex]-value (the minimum value of the function).
[tex]\[ f(-1) = 2(-1)^2 + 4(-1) = 2(1) - 4 = 2 - 4 = -2 \][/tex]
4. Determine the direction of the parabola: Since [tex]\( a = 2 \)[/tex] (which is positive), the parabola opens upwards. This means the function has a minimum value at the vertex and increases without bound as [tex]\( x \)[/tex] moves away from the vertex in both directions.
5. State the range: Because the minimum value of the function is [tex]\( -2 \)[/tex] and it opens upwards indefinitely, the range of [tex]\( f(x) \)[/tex] is all real numbers greater than or equal to [tex]\(-2\)[/tex].
Using interval notation, the range is:
[tex]\[ [-2, \infty) \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.