Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To find the probability that the author wrote at least one check on a randomly selected day using the Poisson distribution, follow these steps:
1. Calculate the Average Rate (λ):
First, we need to determine the average number of checks written per day. Given that the author wrote 189 checks in a year and there are 365 days in a year, the average rate (λ) is calculated as follows:
[tex]\[ \lambda = \frac{189 \text{ checks}}{365 \text{ days}} \approx 0.5178082191780822 \][/tex]
2. Poisson Distribution:
The Poisson distribution formula is:
[tex]\[ P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!} \][/tex]
where [tex]\( P(X = k) \)[/tex] represents the probability of [tex]\( k \)[/tex] events occurring in a fixed interval.
3. Probability of No Checks Written (k = 0):
We need to find the probability of the author writing no checks on a given day (i.e., [tex]\( k = 0 \)[/tex]). Using the Poisson formula:
[tex]\[ P(X = 0) = \frac{0.5178082191780822^0 \cdot e^{-0.5178082191780822}}{0!} \][/tex]
Simplifying further:
[tex]\[ P(X = 0) = e^{-0.5178082191780822} \approx 0.595825035758911 \][/tex]
4. Probability of At Least One Check:
To find the probability of writing at least one check, we use the complement rule. The complement of writing no checks ([tex]\( P(X = 0) \)[/tex]) gives us the probability of writing at least one check ([tex]\( P(X \geq 1) \)[/tex]):
[tex]\[ P(X \geq 1) = 1 - P(X = 0) \][/tex]
Substituting the value of [tex]\( P(X = 0) \)[/tex]:
[tex]\[ P(X \geq 1) = 1 - 0.595825035758911 \approx 0.404 \][/tex]
5. Rounding to Three Decimal Places:
Finally, we round the result to three decimal places:
[tex]\[ P(X \geq 1) \approx 0.404 \][/tex]
Therefore, the probability that the author wrote at least one check on a randomly selected day is approximately [tex]\( \boxed{0.404} \)[/tex].
1. Calculate the Average Rate (λ):
First, we need to determine the average number of checks written per day. Given that the author wrote 189 checks in a year and there are 365 days in a year, the average rate (λ) is calculated as follows:
[tex]\[ \lambda = \frac{189 \text{ checks}}{365 \text{ days}} \approx 0.5178082191780822 \][/tex]
2. Poisson Distribution:
The Poisson distribution formula is:
[tex]\[ P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!} \][/tex]
where [tex]\( P(X = k) \)[/tex] represents the probability of [tex]\( k \)[/tex] events occurring in a fixed interval.
3. Probability of No Checks Written (k = 0):
We need to find the probability of the author writing no checks on a given day (i.e., [tex]\( k = 0 \)[/tex]). Using the Poisson formula:
[tex]\[ P(X = 0) = \frac{0.5178082191780822^0 \cdot e^{-0.5178082191780822}}{0!} \][/tex]
Simplifying further:
[tex]\[ P(X = 0) = e^{-0.5178082191780822} \approx 0.595825035758911 \][/tex]
4. Probability of At Least One Check:
To find the probability of writing at least one check, we use the complement rule. The complement of writing no checks ([tex]\( P(X = 0) \)[/tex]) gives us the probability of writing at least one check ([tex]\( P(X \geq 1) \)[/tex]):
[tex]\[ P(X \geq 1) = 1 - P(X = 0) \][/tex]
Substituting the value of [tex]\( P(X = 0) \)[/tex]:
[tex]\[ P(X \geq 1) = 1 - 0.595825035758911 \approx 0.404 \][/tex]
5. Rounding to Three Decimal Places:
Finally, we round the result to three decimal places:
[tex]\[ P(X \geq 1) \approx 0.404 \][/tex]
Therefore, the probability that the author wrote at least one check on a randomly selected day is approximately [tex]\( \boxed{0.404} \)[/tex].
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.