Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Sure, let's break down the solution step-by-step and identify any errors.
1. Starting Equation:
[tex]\[ 9x + 2 = 8x^2 + 6x \][/tex]
2. Rearrange to Standard Form:
Move all terms to one side to form a quadratic equation in standard form [tex]\( ax^2 + bx + c = 0 \)[/tex]:
[tex]\[ -8x^2 + 3x + 2 = 0 \][/tex]
3. Identify Coefficients:
The quadratic equation in standard form is:
[tex]\[ ax^2 + bx + c = 0 \][/tex]
Here, [tex]\( a = -8 \)[/tex], [tex]\( b = 3 \)[/tex], and [tex]\( c = 2 \)[/tex].
4. Quadratic Formula:
The quadratic formula is given by:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
5. Compute the Discriminant:
The discriminant of the quadratic equation is:
[tex]\[ b^2 - 4ac \][/tex]
Substituting the values of [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex]:
[tex]\[ b^2 - 4ac = 3^2 - 4(-8)(2) = 9 + 64 = 73 \][/tex]
6. Apply the Quadratic Formula:
Since the discriminant is positive (73), the roots are real and distinct. Substitute the values into the quadratic formula:
[tex]\[ x = \frac{-3 \pm \sqrt{73}}{-16} \][/tex]
Simplify the expression for the roots:
[tex]\[ x = \frac{-3 + \sqrt{73}}{-16} \quad \text{and} \quad x = \frac{-3 - \sqrt{73}}{-16} \][/tex]
Which simplifies to:
[tex]\[ x_1 = \frac{3 - \sqrt{73}}{16} \quad \text{and} \quad x_2 = \frac{3 + \sqrt{73}}{16} \][/tex]
Evaluating these numerically:
- Calculate [tex]\(x_1 \approx -0.3465\)[/tex]
- Calculate [tex]\(x_2 \approx 0.7215\)[/tex]
7. Numerical Results:
The numerical solution for the roots of the quadratic equation is:
[tex]\[ x_1 \approx -0.3465 \quad \text{and} \quad x_2 \approx 0.7215 \][/tex]
### Comparison with Initial Solution:
- The initial solution contained a mistake in handling the discriminant:
[tex]\[ \frac{-3 \pm \sqrt{9 - 64i}}{-16} \rightarrow \frac{3 \pm \sqrt{55i}}{16} \][/tex]
This interpretation was incorrect since the discriminant, when evaluated properly (as [tex]\(73\)[/tex]), yields real numbers as roots.
### Conclusion:
Given all the steps correctly, the final step confirms that the roots of the equation [tex]\( -8x^2 + 3x + 2 = 0 \)[/tex] are indeed real numbers and approximately:
[tex]\[ x_1 \approx -0.3465 \quad \text{and} \quad x_2 \approx 0.7215 \][/tex]
The initial solution improperly concluded complex roots. Therefore, the correct final numerical results are real and are:
[tex]\[ -0.3465 \quad \text{and} \quad 0.7215 \][/tex]
1. Starting Equation:
[tex]\[ 9x + 2 = 8x^2 + 6x \][/tex]
2. Rearrange to Standard Form:
Move all terms to one side to form a quadratic equation in standard form [tex]\( ax^2 + bx + c = 0 \)[/tex]:
[tex]\[ -8x^2 + 3x + 2 = 0 \][/tex]
3. Identify Coefficients:
The quadratic equation in standard form is:
[tex]\[ ax^2 + bx + c = 0 \][/tex]
Here, [tex]\( a = -8 \)[/tex], [tex]\( b = 3 \)[/tex], and [tex]\( c = 2 \)[/tex].
4. Quadratic Formula:
The quadratic formula is given by:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
5. Compute the Discriminant:
The discriminant of the quadratic equation is:
[tex]\[ b^2 - 4ac \][/tex]
Substituting the values of [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex]:
[tex]\[ b^2 - 4ac = 3^2 - 4(-8)(2) = 9 + 64 = 73 \][/tex]
6. Apply the Quadratic Formula:
Since the discriminant is positive (73), the roots are real and distinct. Substitute the values into the quadratic formula:
[tex]\[ x = \frac{-3 \pm \sqrt{73}}{-16} \][/tex]
Simplify the expression for the roots:
[tex]\[ x = \frac{-3 + \sqrt{73}}{-16} \quad \text{and} \quad x = \frac{-3 - \sqrt{73}}{-16} \][/tex]
Which simplifies to:
[tex]\[ x_1 = \frac{3 - \sqrt{73}}{16} \quad \text{and} \quad x_2 = \frac{3 + \sqrt{73}}{16} \][/tex]
Evaluating these numerically:
- Calculate [tex]\(x_1 \approx -0.3465\)[/tex]
- Calculate [tex]\(x_2 \approx 0.7215\)[/tex]
7. Numerical Results:
The numerical solution for the roots of the quadratic equation is:
[tex]\[ x_1 \approx -0.3465 \quad \text{and} \quad x_2 \approx 0.7215 \][/tex]
### Comparison with Initial Solution:
- The initial solution contained a mistake in handling the discriminant:
[tex]\[ \frac{-3 \pm \sqrt{9 - 64i}}{-16} \rightarrow \frac{3 \pm \sqrt{55i}}{16} \][/tex]
This interpretation was incorrect since the discriminant, when evaluated properly (as [tex]\(73\)[/tex]), yields real numbers as roots.
### Conclusion:
Given all the steps correctly, the final step confirms that the roots of the equation [tex]\( -8x^2 + 3x + 2 = 0 \)[/tex] are indeed real numbers and approximately:
[tex]\[ x_1 \approx -0.3465 \quad \text{and} \quad x_2 \approx 0.7215 \][/tex]
The initial solution improperly concluded complex roots. Therefore, the correct final numerical results are real and are:
[tex]\[ -0.3465 \quad \text{and} \quad 0.7215 \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.