Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Sure, let's break down the solution step-by-step and identify any errors.
1. Starting Equation:
[tex]\[ 9x + 2 = 8x^2 + 6x \][/tex]
2. Rearrange to Standard Form:
Move all terms to one side to form a quadratic equation in standard form [tex]\( ax^2 + bx + c = 0 \)[/tex]:
[tex]\[ -8x^2 + 3x + 2 = 0 \][/tex]
3. Identify Coefficients:
The quadratic equation in standard form is:
[tex]\[ ax^2 + bx + c = 0 \][/tex]
Here, [tex]\( a = -8 \)[/tex], [tex]\( b = 3 \)[/tex], and [tex]\( c = 2 \)[/tex].
4. Quadratic Formula:
The quadratic formula is given by:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
5. Compute the Discriminant:
The discriminant of the quadratic equation is:
[tex]\[ b^2 - 4ac \][/tex]
Substituting the values of [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex]:
[tex]\[ b^2 - 4ac = 3^2 - 4(-8)(2) = 9 + 64 = 73 \][/tex]
6. Apply the Quadratic Formula:
Since the discriminant is positive (73), the roots are real and distinct. Substitute the values into the quadratic formula:
[tex]\[ x = \frac{-3 \pm \sqrt{73}}{-16} \][/tex]
Simplify the expression for the roots:
[tex]\[ x = \frac{-3 + \sqrt{73}}{-16} \quad \text{and} \quad x = \frac{-3 - \sqrt{73}}{-16} \][/tex]
Which simplifies to:
[tex]\[ x_1 = \frac{3 - \sqrt{73}}{16} \quad \text{and} \quad x_2 = \frac{3 + \sqrt{73}}{16} \][/tex]
Evaluating these numerically:
- Calculate [tex]\(x_1 \approx -0.3465\)[/tex]
- Calculate [tex]\(x_2 \approx 0.7215\)[/tex]
7. Numerical Results:
The numerical solution for the roots of the quadratic equation is:
[tex]\[ x_1 \approx -0.3465 \quad \text{and} \quad x_2 \approx 0.7215 \][/tex]
### Comparison with Initial Solution:
- The initial solution contained a mistake in handling the discriminant:
[tex]\[ \frac{-3 \pm \sqrt{9 - 64i}}{-16} \rightarrow \frac{3 \pm \sqrt{55i}}{16} \][/tex]
This interpretation was incorrect since the discriminant, when evaluated properly (as [tex]\(73\)[/tex]), yields real numbers as roots.
### Conclusion:
Given all the steps correctly, the final step confirms that the roots of the equation [tex]\( -8x^2 + 3x + 2 = 0 \)[/tex] are indeed real numbers and approximately:
[tex]\[ x_1 \approx -0.3465 \quad \text{and} \quad x_2 \approx 0.7215 \][/tex]
The initial solution improperly concluded complex roots. Therefore, the correct final numerical results are real and are:
[tex]\[ -0.3465 \quad \text{and} \quad 0.7215 \][/tex]
1. Starting Equation:
[tex]\[ 9x + 2 = 8x^2 + 6x \][/tex]
2. Rearrange to Standard Form:
Move all terms to one side to form a quadratic equation in standard form [tex]\( ax^2 + bx + c = 0 \)[/tex]:
[tex]\[ -8x^2 + 3x + 2 = 0 \][/tex]
3. Identify Coefficients:
The quadratic equation in standard form is:
[tex]\[ ax^2 + bx + c = 0 \][/tex]
Here, [tex]\( a = -8 \)[/tex], [tex]\( b = 3 \)[/tex], and [tex]\( c = 2 \)[/tex].
4. Quadratic Formula:
The quadratic formula is given by:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
5. Compute the Discriminant:
The discriminant of the quadratic equation is:
[tex]\[ b^2 - 4ac \][/tex]
Substituting the values of [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex]:
[tex]\[ b^2 - 4ac = 3^2 - 4(-8)(2) = 9 + 64 = 73 \][/tex]
6. Apply the Quadratic Formula:
Since the discriminant is positive (73), the roots are real and distinct. Substitute the values into the quadratic formula:
[tex]\[ x = \frac{-3 \pm \sqrt{73}}{-16} \][/tex]
Simplify the expression for the roots:
[tex]\[ x = \frac{-3 + \sqrt{73}}{-16} \quad \text{and} \quad x = \frac{-3 - \sqrt{73}}{-16} \][/tex]
Which simplifies to:
[tex]\[ x_1 = \frac{3 - \sqrt{73}}{16} \quad \text{and} \quad x_2 = \frac{3 + \sqrt{73}}{16} \][/tex]
Evaluating these numerically:
- Calculate [tex]\(x_1 \approx -0.3465\)[/tex]
- Calculate [tex]\(x_2 \approx 0.7215\)[/tex]
7. Numerical Results:
The numerical solution for the roots of the quadratic equation is:
[tex]\[ x_1 \approx -0.3465 \quad \text{and} \quad x_2 \approx 0.7215 \][/tex]
### Comparison with Initial Solution:
- The initial solution contained a mistake in handling the discriminant:
[tex]\[ \frac{-3 \pm \sqrt{9 - 64i}}{-16} \rightarrow \frac{3 \pm \sqrt{55i}}{16} \][/tex]
This interpretation was incorrect since the discriminant, when evaluated properly (as [tex]\(73\)[/tex]), yields real numbers as roots.
### Conclusion:
Given all the steps correctly, the final step confirms that the roots of the equation [tex]\( -8x^2 + 3x + 2 = 0 \)[/tex] are indeed real numbers and approximately:
[tex]\[ x_1 \approx -0.3465 \quad \text{and} \quad x_2 \approx 0.7215 \][/tex]
The initial solution improperly concluded complex roots. Therefore, the correct final numerical results are real and are:
[tex]\[ -0.3465 \quad \text{and} \quad 0.7215 \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.