Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Certainly! Let's solve the equation step by step:
We start with the given equation:
[tex]\[ y - y_1 = m (x - x_1) \][/tex]
Our goal is to solve for [tex]\( x \)[/tex].
### Step 1: Distribute [tex]\( m \)[/tex]
We can distribute [tex]\( m \)[/tex] on the right-hand side:
[tex]\[ y - y_1 = m x - m x_1 \][/tex]
### Step 2: Isolate the term involving [tex]\( x \)[/tex]
To isolate [tex]\( x \)[/tex], we add [tex]\( m x_1 \)[/tex] to both sides of the equation:
[tex]\[ y - y_1 + m x_1 = m x \][/tex]
### Step 3: Solve for [tex]\( x \)[/tex]
Now, we divide both sides by [tex]\( m \)[/tex] to solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{y - y_1 + m x_1}{m} \][/tex]
This can be simplified as:
[tex]\[ x = \frac{y - y_1}{m} + \frac{m x_1}{m} \][/tex]
Since [tex]\(\frac{m x_1}{m}\)[/tex] simplifies to [tex]\( x_1 \)[/tex], we get:
[tex]\[ x = \frac{y - y_1}{m} + x_1 \][/tex]
### Conclusion
Now, let's compare this solution with the given options:
A. [tex]\( x = \frac{y - y_1 + x_1}{m} \)[/tex]
B. [tex]\( x = \frac{y - y_1}{m} - x_1 \)[/tex]
C. [tex]\( x = \frac{y - y_1}{m} + x_1 \)[/tex]
D. [tex]\( x = \frac{m \left(y - y_1\right)}{x_1} \)[/tex]
The correct option that matches our simplified solution is:
[tex]\[ \boxed{C} \][/tex]
Thus, the correct solution is [tex]\( x = \frac{y - y_1}{m} + x_1 \)[/tex], which corresponds to option C.
We start with the given equation:
[tex]\[ y - y_1 = m (x - x_1) \][/tex]
Our goal is to solve for [tex]\( x \)[/tex].
### Step 1: Distribute [tex]\( m \)[/tex]
We can distribute [tex]\( m \)[/tex] on the right-hand side:
[tex]\[ y - y_1 = m x - m x_1 \][/tex]
### Step 2: Isolate the term involving [tex]\( x \)[/tex]
To isolate [tex]\( x \)[/tex], we add [tex]\( m x_1 \)[/tex] to both sides of the equation:
[tex]\[ y - y_1 + m x_1 = m x \][/tex]
### Step 3: Solve for [tex]\( x \)[/tex]
Now, we divide both sides by [tex]\( m \)[/tex] to solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{y - y_1 + m x_1}{m} \][/tex]
This can be simplified as:
[tex]\[ x = \frac{y - y_1}{m} + \frac{m x_1}{m} \][/tex]
Since [tex]\(\frac{m x_1}{m}\)[/tex] simplifies to [tex]\( x_1 \)[/tex], we get:
[tex]\[ x = \frac{y - y_1}{m} + x_1 \][/tex]
### Conclusion
Now, let's compare this solution with the given options:
A. [tex]\( x = \frac{y - y_1 + x_1}{m} \)[/tex]
B. [tex]\( x = \frac{y - y_1}{m} - x_1 \)[/tex]
C. [tex]\( x = \frac{y - y_1}{m} + x_1 \)[/tex]
D. [tex]\( x = \frac{m \left(y - y_1\right)}{x_1} \)[/tex]
The correct option that matches our simplified solution is:
[tex]\[ \boxed{C} \][/tex]
Thus, the correct solution is [tex]\( x = \frac{y - y_1}{m} + x_1 \)[/tex], which corresponds to option C.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.