Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Certainly! Let's solve the equation step by step:
We start with the given equation:
[tex]\[ y - y_1 = m (x - x_1) \][/tex]
Our goal is to solve for [tex]\( x \)[/tex].
### Step 1: Distribute [tex]\( m \)[/tex]
We can distribute [tex]\( m \)[/tex] on the right-hand side:
[tex]\[ y - y_1 = m x - m x_1 \][/tex]
### Step 2: Isolate the term involving [tex]\( x \)[/tex]
To isolate [tex]\( x \)[/tex], we add [tex]\( m x_1 \)[/tex] to both sides of the equation:
[tex]\[ y - y_1 + m x_1 = m x \][/tex]
### Step 3: Solve for [tex]\( x \)[/tex]
Now, we divide both sides by [tex]\( m \)[/tex] to solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{y - y_1 + m x_1}{m} \][/tex]
This can be simplified as:
[tex]\[ x = \frac{y - y_1}{m} + \frac{m x_1}{m} \][/tex]
Since [tex]\(\frac{m x_1}{m}\)[/tex] simplifies to [tex]\( x_1 \)[/tex], we get:
[tex]\[ x = \frac{y - y_1}{m} + x_1 \][/tex]
### Conclusion
Now, let's compare this solution with the given options:
A. [tex]\( x = \frac{y - y_1 + x_1}{m} \)[/tex]
B. [tex]\( x = \frac{y - y_1}{m} - x_1 \)[/tex]
C. [tex]\( x = \frac{y - y_1}{m} + x_1 \)[/tex]
D. [tex]\( x = \frac{m \left(y - y_1\right)}{x_1} \)[/tex]
The correct option that matches our simplified solution is:
[tex]\[ \boxed{C} \][/tex]
Thus, the correct solution is [tex]\( x = \frac{y - y_1}{m} + x_1 \)[/tex], which corresponds to option C.
We start with the given equation:
[tex]\[ y - y_1 = m (x - x_1) \][/tex]
Our goal is to solve for [tex]\( x \)[/tex].
### Step 1: Distribute [tex]\( m \)[/tex]
We can distribute [tex]\( m \)[/tex] on the right-hand side:
[tex]\[ y - y_1 = m x - m x_1 \][/tex]
### Step 2: Isolate the term involving [tex]\( x \)[/tex]
To isolate [tex]\( x \)[/tex], we add [tex]\( m x_1 \)[/tex] to both sides of the equation:
[tex]\[ y - y_1 + m x_1 = m x \][/tex]
### Step 3: Solve for [tex]\( x \)[/tex]
Now, we divide both sides by [tex]\( m \)[/tex] to solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{y - y_1 + m x_1}{m} \][/tex]
This can be simplified as:
[tex]\[ x = \frac{y - y_1}{m} + \frac{m x_1}{m} \][/tex]
Since [tex]\(\frac{m x_1}{m}\)[/tex] simplifies to [tex]\( x_1 \)[/tex], we get:
[tex]\[ x = \frac{y - y_1}{m} + x_1 \][/tex]
### Conclusion
Now, let's compare this solution with the given options:
A. [tex]\( x = \frac{y - y_1 + x_1}{m} \)[/tex]
B. [tex]\( x = \frac{y - y_1}{m} - x_1 \)[/tex]
C. [tex]\( x = \frac{y - y_1}{m} + x_1 \)[/tex]
D. [tex]\( x = \frac{m \left(y - y_1\right)}{x_1} \)[/tex]
The correct option that matches our simplified solution is:
[tex]\[ \boxed{C} \][/tex]
Thus, the correct solution is [tex]\( x = \frac{y - y_1}{m} + x_1 \)[/tex], which corresponds to option C.
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.