Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find the inverse [tex]\( f^{-1}(x) \)[/tex] of the function [tex]\( f(x) = \sqrt[3]{x-7} + 9 \)[/tex], we will follow these steps:
1. Replace [tex]\( f(x) \)[/tex] with [tex]\( y \)[/tex]:
[tex]\[ y = \sqrt[3]{x-7} + 9 \][/tex]
2. Solve for [tex]\( x \)[/tex] in terms of [tex]\( y \)[/tex]:
- First, isolate the cube root term by subtracting 9 from both sides:
[tex]\[ y - 9 = \sqrt[3]{x-7} \][/tex]
- Next, cube both sides to remove the cube root:
[tex]\[ (y - 9)^3 = x - 7 \][/tex]
- Finally, solve for [tex]\( x \)[/tex] by adding 7 to both sides:
[tex]\[ x = (y - 9)^3 + 7 \][/tex]
3. Express the inverse function:
- Replace [tex]\( y \)[/tex] with [tex]\( x \)[/tex] to get the inverse function:
[tex]\[ f^{-1}(x) = (x - 9)^3 + 7 \][/tex]
Thus, the inverse function [tex]\( f^{-1}(x) \)[/tex] is:
[tex]\[ f^{-1}(x) = (x - 9)^3 + 7 \][/tex]
1. Replace [tex]\( f(x) \)[/tex] with [tex]\( y \)[/tex]:
[tex]\[ y = \sqrt[3]{x-7} + 9 \][/tex]
2. Solve for [tex]\( x \)[/tex] in terms of [tex]\( y \)[/tex]:
- First, isolate the cube root term by subtracting 9 from both sides:
[tex]\[ y - 9 = \sqrt[3]{x-7} \][/tex]
- Next, cube both sides to remove the cube root:
[tex]\[ (y - 9)^3 = x - 7 \][/tex]
- Finally, solve for [tex]\( x \)[/tex] by adding 7 to both sides:
[tex]\[ x = (y - 9)^3 + 7 \][/tex]
3. Express the inverse function:
- Replace [tex]\( y \)[/tex] with [tex]\( x \)[/tex] to get the inverse function:
[tex]\[ f^{-1}(x) = (x - 9)^3 + 7 \][/tex]
Thus, the inverse function [tex]\( f^{-1}(x) \)[/tex] is:
[tex]\[ f^{-1}(x) = (x - 9)^3 + 7 \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.