Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To find the inverse [tex]\( f^{-1}(x) \)[/tex] of the function [tex]\( f(x) = \sqrt[3]{x-7} + 9 \)[/tex], we will follow these steps:
1. Replace [tex]\( f(x) \)[/tex] with [tex]\( y \)[/tex]:
[tex]\[ y = \sqrt[3]{x-7} + 9 \][/tex]
2. Solve for [tex]\( x \)[/tex] in terms of [tex]\( y \)[/tex]:
- First, isolate the cube root term by subtracting 9 from both sides:
[tex]\[ y - 9 = \sqrt[3]{x-7} \][/tex]
- Next, cube both sides to remove the cube root:
[tex]\[ (y - 9)^3 = x - 7 \][/tex]
- Finally, solve for [tex]\( x \)[/tex] by adding 7 to both sides:
[tex]\[ x = (y - 9)^3 + 7 \][/tex]
3. Express the inverse function:
- Replace [tex]\( y \)[/tex] with [tex]\( x \)[/tex] to get the inverse function:
[tex]\[ f^{-1}(x) = (x - 9)^3 + 7 \][/tex]
Thus, the inverse function [tex]\( f^{-1}(x) \)[/tex] is:
[tex]\[ f^{-1}(x) = (x - 9)^3 + 7 \][/tex]
1. Replace [tex]\( f(x) \)[/tex] with [tex]\( y \)[/tex]:
[tex]\[ y = \sqrt[3]{x-7} + 9 \][/tex]
2. Solve for [tex]\( x \)[/tex] in terms of [tex]\( y \)[/tex]:
- First, isolate the cube root term by subtracting 9 from both sides:
[tex]\[ y - 9 = \sqrt[3]{x-7} \][/tex]
- Next, cube both sides to remove the cube root:
[tex]\[ (y - 9)^3 = x - 7 \][/tex]
- Finally, solve for [tex]\( x \)[/tex] by adding 7 to both sides:
[tex]\[ x = (y - 9)^3 + 7 \][/tex]
3. Express the inverse function:
- Replace [tex]\( y \)[/tex] with [tex]\( x \)[/tex] to get the inverse function:
[tex]\[ f^{-1}(x) = (x - 9)^3 + 7 \][/tex]
Thus, the inverse function [tex]\( f^{-1}(x) \)[/tex] is:
[tex]\[ f^{-1}(x) = (x - 9)^3 + 7 \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.