Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Sure, let's work through the problem step-by-step.
1. Initial State of the Cube:
- Let's denote the initial side length of the cube as [tex]\( s \)[/tex].
- The initial volume [tex]\( V \)[/tex] of the cube is given by [tex]\( V = s^3 \)[/tex].
- The initial density of the cube is [tex]\( p \)[/tex].
2. Volume Compression:
- Each side of the cube becomes one-half of its original length after compression. So, the new side length [tex]\( s' \)[/tex] is [tex]\( s' = \frac{s}{2} \)[/tex].
- The new volume [tex]\( V' \)[/tex] of the cube after compression is given by:
[tex]\[ V' = (s')^3 = \left(\frac{s}{2}\right)^3 = \frac{s^3}{8} \][/tex]
3. Density Calculation:
- Density is defined as mass per unit volume. The mass [tex]\( m \)[/tex] of the cube remains constant during compression.
- The initial mass of the cube can be expressed as:
[tex]\[ m = \text{Initial Density} \times \text{Initial Volume} = p \times s^3 \][/tex]
- The new density [tex]\( p' \)[/tex] is the mass divided by the new volume:
[tex]\[ p' = \frac{m}{V'} = \frac{p \times s^3}{\frac{s^3}{8}} = p \times \frac{8s^3}{s^3} = 8p \][/tex]
So, the new density of the material of the cube, after compression, is [tex]\( 8.0p \)[/tex].
Therefore, the correct answer is D 8.0p.
1. Initial State of the Cube:
- Let's denote the initial side length of the cube as [tex]\( s \)[/tex].
- The initial volume [tex]\( V \)[/tex] of the cube is given by [tex]\( V = s^3 \)[/tex].
- The initial density of the cube is [tex]\( p \)[/tex].
2. Volume Compression:
- Each side of the cube becomes one-half of its original length after compression. So, the new side length [tex]\( s' \)[/tex] is [tex]\( s' = \frac{s}{2} \)[/tex].
- The new volume [tex]\( V' \)[/tex] of the cube after compression is given by:
[tex]\[ V' = (s')^3 = \left(\frac{s}{2}\right)^3 = \frac{s^3}{8} \][/tex]
3. Density Calculation:
- Density is defined as mass per unit volume. The mass [tex]\( m \)[/tex] of the cube remains constant during compression.
- The initial mass of the cube can be expressed as:
[tex]\[ m = \text{Initial Density} \times \text{Initial Volume} = p \times s^3 \][/tex]
- The new density [tex]\( p' \)[/tex] is the mass divided by the new volume:
[tex]\[ p' = \frac{m}{V'} = \frac{p \times s^3}{\frac{s^3}{8}} = p \times \frac{8s^3}{s^3} = 8p \][/tex]
So, the new density of the material of the cube, after compression, is [tex]\( 8.0p \)[/tex].
Therefore, the correct answer is D 8.0p.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.