Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Sure, let's work through the problem step-by-step.
1. Initial State of the Cube:
- Let's denote the initial side length of the cube as [tex]\( s \)[/tex].
- The initial volume [tex]\( V \)[/tex] of the cube is given by [tex]\( V = s^3 \)[/tex].
- The initial density of the cube is [tex]\( p \)[/tex].
2. Volume Compression:
- Each side of the cube becomes one-half of its original length after compression. So, the new side length [tex]\( s' \)[/tex] is [tex]\( s' = \frac{s}{2} \)[/tex].
- The new volume [tex]\( V' \)[/tex] of the cube after compression is given by:
[tex]\[ V' = (s')^3 = \left(\frac{s}{2}\right)^3 = \frac{s^3}{8} \][/tex]
3. Density Calculation:
- Density is defined as mass per unit volume. The mass [tex]\( m \)[/tex] of the cube remains constant during compression.
- The initial mass of the cube can be expressed as:
[tex]\[ m = \text{Initial Density} \times \text{Initial Volume} = p \times s^3 \][/tex]
- The new density [tex]\( p' \)[/tex] is the mass divided by the new volume:
[tex]\[ p' = \frac{m}{V'} = \frac{p \times s^3}{\frac{s^3}{8}} = p \times \frac{8s^3}{s^3} = 8p \][/tex]
So, the new density of the material of the cube, after compression, is [tex]\( 8.0p \)[/tex].
Therefore, the correct answer is D 8.0p.
1. Initial State of the Cube:
- Let's denote the initial side length of the cube as [tex]\( s \)[/tex].
- The initial volume [tex]\( V \)[/tex] of the cube is given by [tex]\( V = s^3 \)[/tex].
- The initial density of the cube is [tex]\( p \)[/tex].
2. Volume Compression:
- Each side of the cube becomes one-half of its original length after compression. So, the new side length [tex]\( s' \)[/tex] is [tex]\( s' = \frac{s}{2} \)[/tex].
- The new volume [tex]\( V' \)[/tex] of the cube after compression is given by:
[tex]\[ V' = (s')^3 = \left(\frac{s}{2}\right)^3 = \frac{s^3}{8} \][/tex]
3. Density Calculation:
- Density is defined as mass per unit volume. The mass [tex]\( m \)[/tex] of the cube remains constant during compression.
- The initial mass of the cube can be expressed as:
[tex]\[ m = \text{Initial Density} \times \text{Initial Volume} = p \times s^3 \][/tex]
- The new density [tex]\( p' \)[/tex] is the mass divided by the new volume:
[tex]\[ p' = \frac{m}{V'} = \frac{p \times s^3}{\frac{s^3}{8}} = p \times \frac{8s^3}{s^3} = 8p \][/tex]
So, the new density of the material of the cube, after compression, is [tex]\( 8.0p \)[/tex].
Therefore, the correct answer is D 8.0p.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.