Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To solve this problem, we'll start by analysing the given function for the population size [tex]\( P(t) \)[/tex] of the species of fish in the lake:
[tex]\[ P(t) = \frac{1500}{1 + 9 e^{-0.42 t}} \][/tex]
We need to find the initial population size when [tex]\( t = 0 \)[/tex] and the population size after 9 years when [tex]\( t = 9 \)[/tex].
### Step 1: Initial Population Size ([tex]\( t = 0 \)[/tex])
Let's substitute [tex]\( t = 0 \)[/tex] into the function [tex]\( P(t) \)[/tex]:
[tex]\[ P(0) = \frac{1500}{1 + 9 e^{-0.42 \cdot 0}} \][/tex]
Since [tex]\( e^0 = 1 \)[/tex], this simplifies to:
[tex]\[ P(0) = \frac{1500}{1 + 9 \cdot 1} \][/tex]
[tex]\[ P(0) = \frac{1500}{1 + 9} \][/tex]
[tex]\[ P(0) = \frac{1500}{10} \][/tex]
[tex]\[ P(0) = 150 \][/tex]
Therefore, the initial population size of the species is [tex]\( 150 \)[/tex] fish.
### Step 2: Population Size After 9 Years ([tex]\( t = 9 \)[/tex])
Next, we substitute [tex]\( t = 9 \)[/tex] into the function [tex]\( P(t) \)[/tex]:
[tex]\[ P(9) = \frac{1500}{1 + 9 e^{-0.42 \cdot 9}} \][/tex]
First, calculate the exponent:
[tex]\[ -0.42 \cdot 9 = -3.78 \][/tex]
Now calculate [tex]\( e^{-3.78} \)[/tex]. This value is a bit intricate, but it's a small number. To ease the calculation, we know:
[tex]\[ e^{-3.78} \approx 0.0228 \][/tex]
Substitute this into the denominator:
[tex]\[ P(9) = \frac{1500}{1 + 9 \cdot 0.0228} \][/tex]
[tex]\[ P(9) = \frac{1500}{1 + 0.2052} \][/tex]
[tex]\[ P(9) = \frac{1500}{1.2052} \][/tex]
Finally, simplify the fraction:
[tex]\[ P(9) \approx 1244 \][/tex]
Therefore, the population size after 9 years is approximately [tex]\( 1244 \)[/tex] fish.
### Summary
- Initial population size: [tex]\( 150 \)[/tex] fish
- Population size after 9 years: [tex]\( 1244 \)[/tex] fish
[tex]\[ P(t) = \frac{1500}{1 + 9 e^{-0.42 t}} \][/tex]
We need to find the initial population size when [tex]\( t = 0 \)[/tex] and the population size after 9 years when [tex]\( t = 9 \)[/tex].
### Step 1: Initial Population Size ([tex]\( t = 0 \)[/tex])
Let's substitute [tex]\( t = 0 \)[/tex] into the function [tex]\( P(t) \)[/tex]:
[tex]\[ P(0) = \frac{1500}{1 + 9 e^{-0.42 \cdot 0}} \][/tex]
Since [tex]\( e^0 = 1 \)[/tex], this simplifies to:
[tex]\[ P(0) = \frac{1500}{1 + 9 \cdot 1} \][/tex]
[tex]\[ P(0) = \frac{1500}{1 + 9} \][/tex]
[tex]\[ P(0) = \frac{1500}{10} \][/tex]
[tex]\[ P(0) = 150 \][/tex]
Therefore, the initial population size of the species is [tex]\( 150 \)[/tex] fish.
### Step 2: Population Size After 9 Years ([tex]\( t = 9 \)[/tex])
Next, we substitute [tex]\( t = 9 \)[/tex] into the function [tex]\( P(t) \)[/tex]:
[tex]\[ P(9) = \frac{1500}{1 + 9 e^{-0.42 \cdot 9}} \][/tex]
First, calculate the exponent:
[tex]\[ -0.42 \cdot 9 = -3.78 \][/tex]
Now calculate [tex]\( e^{-3.78} \)[/tex]. This value is a bit intricate, but it's a small number. To ease the calculation, we know:
[tex]\[ e^{-3.78} \approx 0.0228 \][/tex]
Substitute this into the denominator:
[tex]\[ P(9) = \frac{1500}{1 + 9 \cdot 0.0228} \][/tex]
[tex]\[ P(9) = \frac{1500}{1 + 0.2052} \][/tex]
[tex]\[ P(9) = \frac{1500}{1.2052} \][/tex]
Finally, simplify the fraction:
[tex]\[ P(9) \approx 1244 \][/tex]
Therefore, the population size after 9 years is approximately [tex]\( 1244 \)[/tex] fish.
### Summary
- Initial population size: [tex]\( 150 \)[/tex] fish
- Population size after 9 years: [tex]\( 1244 \)[/tex] fish
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.