Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To expand the expression [tex]\(\sqrt{\frac{1-x}{1+x}}\)[/tex] around [tex]\(x=0\)[/tex], we can use a Maclaurin series. The Maclaurin series expansion of a function [tex]\(f(x)\)[/tex] around [tex]\(x = 0\)[/tex] is given by:
[tex]\[ f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \cdots \][/tex]
Let's break down the expansion step by step.
1. Evaluate the function at [tex]\(x=0\)[/tex]:
[tex]\[ f(x) = \sqrt{\frac{1-x}{1+x}} \][/tex]
At [tex]\(x = 0\)[/tex]:
[tex]\[ f(0) = \sqrt{\frac{1-0}{1+0}} = \sqrt{1} = 1 \][/tex]
2. Find the first derivative and evaluate at [tex]\(x=0\)[/tex]:
[tex]\[ f'(x) = \frac{d}{dx} \left(\sqrt{\frac{1-x}{1+x}}\right) \][/tex]
Using the chain rule and quotient rule, we get:
[tex]\[ f'(x) = \frac{-1(1+x)-(1-x)1}{2\sqrt{(1-x)(1+x)}(1+x)^2} = \frac{-(1+x)-(1-x)}{2(1+x)\sqrt{(1-x)(1+x)}} = \frac{-2}{2(1+x)\sqrt{(1-x)(1+x)}} = \frac{-1}{(1+x)\sqrt{(1-x)(1+x)}} \][/tex]
At [tex]\(x = 0\)[/tex]:
[tex]\[ f'(0) = \frac{-1}{1 \cdot \sqrt{1}} = -1 \][/tex]
3. Find the second derivative and evaluate at [tex]\(x=0\)[/tex]:
This process involves taking another derivative of the first derivative, which is quite elaborate. However, continuing in this manner:
[tex]\[ f''(x) = \ldots (through some laborious steps) \][/tex]
At [tex]\(x = 0\)[/tex]:
[tex]\[ f''(0) = \frac{1}{2} \][/tex]
Continuing this process for higher-order derivatives, let's list the key terms obtained:
4. Combine all evaluated terms:
The expansion up to the required order will provide the polynomial form.
Upon fully expanding as requested, we obtain the series:
[tex]\[ \sqrt{\frac{1-x}{1+x}} = 1 - x + \frac{x^2}{2} - \frac{x^3}{2} + \frac{3x^4}{8} - \frac{3x^5}{8} + \frac{5x^6}{16} - \frac{5x^7}{16} + \frac{35x^8}{128} - \frac{35x^9}{128} + \ldots \][/tex]
In simpler terms:
[tex]\[ = 1 - x + \frac{x^2}{2} - \frac{x^3}{2} + \frac{3x^4}{8} - \frac{3x^5}{8} + \frac{5x^6}{16} - \frac{5x^7}{16} + \frac{35x^8}{128} - \frac{35x^9}{128}. \][/tex]
Thus, the expanded series expression for [tex]\(\sqrt{\frac{1-x}{1+x}}\)[/tex] up to [tex]\(x^9\)[/tex] is:
[tex]\[ - \frac{35x^9}{128} + \frac{35x^8}{128} - \frac{5x^7}{16} + \frac{5x^6}{16} - \frac{3x^5}{8} + \frac{3x^4}{8} - \frac{x^3}{2} + \frac{x^2}{2} - x + 1. \][/tex]
[tex]\[ f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \cdots \][/tex]
Let's break down the expansion step by step.
1. Evaluate the function at [tex]\(x=0\)[/tex]:
[tex]\[ f(x) = \sqrt{\frac{1-x}{1+x}} \][/tex]
At [tex]\(x = 0\)[/tex]:
[tex]\[ f(0) = \sqrt{\frac{1-0}{1+0}} = \sqrt{1} = 1 \][/tex]
2. Find the first derivative and evaluate at [tex]\(x=0\)[/tex]:
[tex]\[ f'(x) = \frac{d}{dx} \left(\sqrt{\frac{1-x}{1+x}}\right) \][/tex]
Using the chain rule and quotient rule, we get:
[tex]\[ f'(x) = \frac{-1(1+x)-(1-x)1}{2\sqrt{(1-x)(1+x)}(1+x)^2} = \frac{-(1+x)-(1-x)}{2(1+x)\sqrt{(1-x)(1+x)}} = \frac{-2}{2(1+x)\sqrt{(1-x)(1+x)}} = \frac{-1}{(1+x)\sqrt{(1-x)(1+x)}} \][/tex]
At [tex]\(x = 0\)[/tex]:
[tex]\[ f'(0) = \frac{-1}{1 \cdot \sqrt{1}} = -1 \][/tex]
3. Find the second derivative and evaluate at [tex]\(x=0\)[/tex]:
This process involves taking another derivative of the first derivative, which is quite elaborate. However, continuing in this manner:
[tex]\[ f''(x) = \ldots (through some laborious steps) \][/tex]
At [tex]\(x = 0\)[/tex]:
[tex]\[ f''(0) = \frac{1}{2} \][/tex]
Continuing this process for higher-order derivatives, let's list the key terms obtained:
4. Combine all evaluated terms:
The expansion up to the required order will provide the polynomial form.
Upon fully expanding as requested, we obtain the series:
[tex]\[ \sqrt{\frac{1-x}{1+x}} = 1 - x + \frac{x^2}{2} - \frac{x^3}{2} + \frac{3x^4}{8} - \frac{3x^5}{8} + \frac{5x^6}{16} - \frac{5x^7}{16} + \frac{35x^8}{128} - \frac{35x^9}{128} + \ldots \][/tex]
In simpler terms:
[tex]\[ = 1 - x + \frac{x^2}{2} - \frac{x^3}{2} + \frac{3x^4}{8} - \frac{3x^5}{8} + \frac{5x^6}{16} - \frac{5x^7}{16} + \frac{35x^8}{128} - \frac{35x^9}{128}. \][/tex]
Thus, the expanded series expression for [tex]\(\sqrt{\frac{1-x}{1+x}}\)[/tex] up to [tex]\(x^9\)[/tex] is:
[tex]\[ - \frac{35x^9}{128} + \frac{35x^8}{128} - \frac{5x^7}{16} + \frac{5x^6}{16} - \frac{3x^5}{8} + \frac{3x^4}{8} - \frac{x^3}{2} + \frac{x^2}{2} - x + 1. \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.