Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine the number of solutions for the equation [tex]\(2(x + 4) - 1 = 2x + 7\)[/tex], let's go through the steps.
1. Distribute the 2 inside the parentheses:
[tex]\[ 2(x + 4) - 1 = 2x + 7 \][/tex]
This becomes:
[tex]\[ 2x + 8 - 1 = 2x + 7 \][/tex]
2. Simplify the left side:
[tex]\[ 2x + 7 = 2x + 7 \][/tex]
3. Subtract [tex]\(2x\)[/tex] from both sides:
[tex]\[ 2x + 7 - 2x = 2x + 7 - 2x \][/tex]
This results in:
[tex]\[ 7 = 7 \][/tex]
At this point, we observe that the equation [tex]\(7 = 7\)[/tex] is always true, regardless of the value of [tex]\(x\)[/tex]. This indicates that the original equation is an identity and holds for all possible values of [tex]\(x\)[/tex].
Therefore, the equation [tex]\(2(x + 4) - 1 = 2x + 7\)[/tex] does not have a specific, finite number of solutions but rather has an infinite number of solutions.
Thus, the correct answer is:
C. infinite
1. Distribute the 2 inside the parentheses:
[tex]\[ 2(x + 4) - 1 = 2x + 7 \][/tex]
This becomes:
[tex]\[ 2x + 8 - 1 = 2x + 7 \][/tex]
2. Simplify the left side:
[tex]\[ 2x + 7 = 2x + 7 \][/tex]
3. Subtract [tex]\(2x\)[/tex] from both sides:
[tex]\[ 2x + 7 - 2x = 2x + 7 - 2x \][/tex]
This results in:
[tex]\[ 7 = 7 \][/tex]
At this point, we observe that the equation [tex]\(7 = 7\)[/tex] is always true, regardless of the value of [tex]\(x\)[/tex]. This indicates that the original equation is an identity and holds for all possible values of [tex]\(x\)[/tex].
Therefore, the equation [tex]\(2(x + 4) - 1 = 2x + 7\)[/tex] does not have a specific, finite number of solutions but rather has an infinite number of solutions.
Thus, the correct answer is:
C. infinite
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.