At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

Component 1: Short Review Questions

Q1. For the two points (2,5) and (-1,7) on a number plane, calculate:

a) the gradient of the interval that joins them.

b) the distance between them.

c) the midpoint of the interval that joins them.


Sagot :

Sure! Let's tackle each part of the question step by step.

### Given Points
We have two points:
- Point A: (2, 5)
- Point B: (-1, 7)

### Part (a) - Calculate the gradient of the interval which joins them.
The gradient (or slope) between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is calculated using the following formula:
[tex]\[ \text{Gradient} = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]

For our given points:
- [tex]\(x_1 = 2\)[/tex], [tex]\(y_1 = 5\)[/tex]
- [tex]\(x_2 = -1\)[/tex], [tex]\(y_2 = 7\)[/tex]

Plugging in these values, we get:
[tex]\[ \text{Gradient} = \frac{7 - 5}{-1 - 2} = \frac{2}{-3} = -\frac{2}{3} \][/tex]
So, the gradient of the interval which joins the points (2, 5) and (-1, 7) is [tex]\(-0.6666666666666666\)[/tex] (or [tex]\(-\frac{2}{3}\)[/tex]).

### Part (b) - Calculate the distance between them.
The distance between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is calculated using the distance formula:
[tex]\[ \text{Distance} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]

Plugging in the values, we obtain:
[tex]\[ \text{Distance} = \sqrt{(-1 - 2)^2 + (7 - 5)^2} = \sqrt{(-3)^2 + (2)^2} = \sqrt{9 + 4} = \sqrt{13} \][/tex]
Thus, the distance between the points (2, 5) and (-1, 7) is approximately [tex]\(3.605551275463989\)[/tex], when evaluated.

### Part (c) - Calculate the midpoint of the interval which joins them.
The midpoint [tex]\((x_m, y_m)\)[/tex] between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is calculated using the midpoint formula:
[tex]\[ (x_m, y_m) = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right) \][/tex]

Plugging in the values, we get:
[tex]\[ (x_m, y_m) = \left(\frac{2 + (-1)}{2}, \frac{5 + 7}{2}\right) = \left(\frac{1}{2}, \frac{12}{2}\right) = (0.5, 6) \][/tex]

So, the midpoint of the interval which joins the points (2, 5) and (-1, 7) is [tex]\((0.5, 6)\)[/tex].

### Summary
1. The gradient of the interval joining the points is [tex]\(-0.6666666666666666\)[/tex].
2. The distance between the points is approximately [tex]\(3.605551275463989\)[/tex].
3. The midpoint of the interval joining the points is [tex]\((0.5, 6)\)[/tex].