Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Certainly! Let's solve this problem step-by-step.
1. Identify the Key Information:
- The distance between the two towns, A and B, is 440 km.
- Driver 1 travels from Town A to Town B at a speed of 60 km/h.
- Driver 2 travels from Town B to Town A at a speed of 50 km/h.
- Both drivers start their journey at the same time.
2. Understand the Problem:
- We need to find the time it will take for the two drivers to meet each other on the road.
3. Calculate the Relative Speed:
- Since both drivers are moving towards each other, their speeds are additive when determining how quickly the distance between them closes.
- Therefore, the combined or relative speed of the two drivers is:
[tex]\[ \text{Relative Speed} = 60 \, \text{km/h} + 50 \, \text{km/h} = 110 \, \text{km/h} \][/tex]
4. Determine the Time to Meet:
- The time it takes for the drivers to meet can be found using the formula:
[tex]\[ \text{Time} = \frac{\text{Distance}}{\text{Relative Speed}} \][/tex]
- Here, the distance between the towns is 440 km, and their relative speed is 110 km/h.
- Plugging in these values, we get:
[tex]\[ \text{Time} = \frac{440 \, \text{km}}{110 \, \text{km/h}} = 4 \, \text{hours} \][/tex]
5. Conclusion:
- The drivers will meet each other after 4 hours of travel.
Thus, it will be 4 hours before the drivers meet each other.
1. Identify the Key Information:
- The distance between the two towns, A and B, is 440 km.
- Driver 1 travels from Town A to Town B at a speed of 60 km/h.
- Driver 2 travels from Town B to Town A at a speed of 50 km/h.
- Both drivers start their journey at the same time.
2. Understand the Problem:
- We need to find the time it will take for the two drivers to meet each other on the road.
3. Calculate the Relative Speed:
- Since both drivers are moving towards each other, their speeds are additive when determining how quickly the distance between them closes.
- Therefore, the combined or relative speed of the two drivers is:
[tex]\[ \text{Relative Speed} = 60 \, \text{km/h} + 50 \, \text{km/h} = 110 \, \text{km/h} \][/tex]
4. Determine the Time to Meet:
- The time it takes for the drivers to meet can be found using the formula:
[tex]\[ \text{Time} = \frac{\text{Distance}}{\text{Relative Speed}} \][/tex]
- Here, the distance between the towns is 440 km, and their relative speed is 110 km/h.
- Plugging in these values, we get:
[tex]\[ \text{Time} = \frac{440 \, \text{km}}{110 \, \text{km/h}} = 4 \, \text{hours} \][/tex]
5. Conclusion:
- The drivers will meet each other after 4 hours of travel.
Thus, it will be 4 hours before the drivers meet each other.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.