At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To evaluate the limit [tex]\(\lim_{x \rightarrow \infty} \frac{3}{x^3 + 1}\)[/tex], we can proceed step by step, considering the behavior of the function as [tex]\(x\)[/tex] approaches infinity.
1. Understand the form of the function:
The given function is [tex]\(\frac{3}{x^3 + 1}\)[/tex]. As [tex]\(x\)[/tex] increases towards infinity, the term [tex]\(x^3 + 1\)[/tex] also increases significantly.
2. Analyze the denominator:
When [tex]\(x\)[/tex] becomes very large, the expression [tex]\(x^3 + 1\)[/tex] is dominated by the [tex]\(x^3\)[/tex] term. Hence, for very large [tex]\(x\)[/tex], we can approximate [tex]\(x^3 + 1 \approx x^3\)[/tex].
3. Simplified function analysis:
Thus, the function can be approximated as [tex]\(\frac{3}{x^3 + 1} \approx \frac{3}{x^3}\)[/tex] for large values of [tex]\(x\)[/tex].
4. Calculating the limit:
Now, we analyze the limit of the simpler function,
[tex]\[ \lim_{x \rightarrow \infty} \frac{3}{x^3} \][/tex]
As [tex]\(x\)[/tex] approaches infinity, [tex]\(x^3\)[/tex] also approaches infinity. Since [tex]\(3\)[/tex] is a constant, and the denominator [tex]\(x^3\)[/tex] grows without bound, the fraction [tex]\(\frac{3}{x^3}\)[/tex] becomes very small. Specifically, it approaches zero.
5. Conclusion:
Hence, the value of the limit is:
[tex]\[ \lim_{x \rightarrow \infty} \frac{3}{x^3 + 1} = 0 \][/tex]
Therefore, the limit is [tex]\(0\)[/tex].
1. Understand the form of the function:
The given function is [tex]\(\frac{3}{x^3 + 1}\)[/tex]. As [tex]\(x\)[/tex] increases towards infinity, the term [tex]\(x^3 + 1\)[/tex] also increases significantly.
2. Analyze the denominator:
When [tex]\(x\)[/tex] becomes very large, the expression [tex]\(x^3 + 1\)[/tex] is dominated by the [tex]\(x^3\)[/tex] term. Hence, for very large [tex]\(x\)[/tex], we can approximate [tex]\(x^3 + 1 \approx x^3\)[/tex].
3. Simplified function analysis:
Thus, the function can be approximated as [tex]\(\frac{3}{x^3 + 1} \approx \frac{3}{x^3}\)[/tex] for large values of [tex]\(x\)[/tex].
4. Calculating the limit:
Now, we analyze the limit of the simpler function,
[tex]\[ \lim_{x \rightarrow \infty} \frac{3}{x^3} \][/tex]
As [tex]\(x\)[/tex] approaches infinity, [tex]\(x^3\)[/tex] also approaches infinity. Since [tex]\(3\)[/tex] is a constant, and the denominator [tex]\(x^3\)[/tex] grows without bound, the fraction [tex]\(\frac{3}{x^3}\)[/tex] becomes very small. Specifically, it approaches zero.
5. Conclusion:
Hence, the value of the limit is:
[tex]\[ \lim_{x \rightarrow \infty} \frac{3}{x^3 + 1} = 0 \][/tex]
Therefore, the limit is [tex]\(0\)[/tex].
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.