Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Step by step Explanation:
To solve for the number of each type of coin in the jar, let's define variables for the number of each type of coin:
Let [tex]\( x_1 \), \( x_2 \), \( x_5 \)[/tex], and [tex]\( x_{10} \)[/tex] represent the number of 1p, 2p, 5p, and 10p coins respectively.
From the problem statement, we have the following information:
1. Total number of coins: [tex]\( x_1 + x_2 + x_5 + x_{10} = 20 \)[/tex]
2. Probability of picking each type of coin:
- Probability of picking a 1p coin: [tex]\( \frac{x_1}{20} = \frac{1}{5} \)[/tex]
- Probability of picking a 2p coin: [tex]\( \frac{x_2}{20} = \frac{1}{2} \)[/tex]
Let's solve these equations step by step:
From [tex]\( \frac{x_1}{20} = \frac{1}{5} \)[/tex]:
[tex]\[ x_1 = \frac{1}{5} \times 20 = 4 \][/tex]
From [tex]\( \frac{x_2}{20} = \frac{1}{2} \)[/tex]:
[tex]\[ x_2 = \frac{1}{2} \times 20 = 10 \][/tex]
Now, using the equation [tex]\( x_1 + x_2 + x_5 + x_{10} = 20 \)[/tex], substitute [tex]\( x_1 \)[/tex] and [tex]\( x_2 \)[/tex]:
[tex]\[ 4 + 10 + x_5 + x_{10} = 20 \][/tex]
[tex]\[ x_5 + x_{10} = 20 - 14 \][/tex]
[tex]\[ x_5 + x_{10} = 6 \][/tex]
We also know the total value of the coins in the jar is 59 pence:
[tex]\[ 1 \cdot x_1 + 2 \cdot x_2 + 5 \cdot x_5 + 10 \cdot x_{10} = 59 \][/tex]
Substitute [tex]\( x_1 = 4 \)[/tex] and [tex]\( x_2 = 10 \)[/tex]:
[tex]\[ 1 \cdot 4 + 2 \cdot 10 + 5 \cdot x_5 + 10 \cdot x_{10} = 59 \][/tex]
[tex]\[ 4 + 20 + 5x_5 + 10x_{10} = 59 \][/tex]
[tex]\[ 24 + 5x_5 + 10x_{10} = 59 \][/tex]
[tex]\[ 5x_5 + 10x_{10} = 35 \][/tex]
[tex]\[ x_5 + 2x_{10} = 7 \][/tex]
Now, solve the system of equations:
1. [tex]\( x_5 + x_{10} = 6 \)[/tex]
2. [tex]\( x_5 + 2x_{10} = 7 \)[/tex]
Subtract the first equation from the second:
[tex]\[ (x_5 + 2x_{10}) - (x_5 + x_{10}) = 7 - 6 \][/tex]
[tex]\[ x_{10} = 1 \][/tex]
Substitute [tex]\( x_{10} = 1 \)[/tex] into [tex]\( x_5 + x_{10} = 6 \)[/tex]:
[tex]\[ x_5 + 1 = 6 \][/tex]
[tex]\[ x_5 = 5 \][/tex]
So, the number of each type of coin in the jar is:
- 1p coins [tex](\( x_1 \))[/tex]: 4
- 2p coins [tex](\( x_2 \))[/tex]: 10
- 5p coins [tex](\( x_5 \))[/tex]: 5
- 10p coins [tex](\( x_{10} \))[/tex]: 1
Therefore, there are 4 coins of 1p, 10 coins of 2p, 5 coins of 5p, and 1 coin of 10p in the jar.
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.