Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

Select the best answer for the question.

The LCD (Least Common Denominator) for the fractions [tex]\(\frac{1}{3}, \frac{3}{4}, \frac{5}{32},\)[/tex] and [tex]\(\frac{8}{9}\)[/tex] is:

A. 64
B. 3,072
C. 288
D. 24


Sagot :

To find the least common denominator (LCD) of the fractions [tex]\(\frac{1}{3}\)[/tex], [tex]\(\frac{3}{4}\)[/tex], [tex]\(\frac{5}{32}\)[/tex], and [tex]\(\frac{8}{9}\)[/tex], we need to determine the least common multiple (LCM) of their denominators: 3, 4, 32, and 9.

Let's go through the process step-by-step:

1. List the prime factors of each denominator:
- [tex]\(3\)[/tex] is already a prime number.
- [tex]\(4\)[/tex] can be factored as [tex]\(2^2\)[/tex].
- [tex]\(32\)[/tex] can be factored as [tex]\(2^5\)[/tex].
- [tex]\(9\)[/tex] can be factored as [tex]\(3^2\)[/tex].

2. Identify the maximum power of each prime number appearing in the factorizations:
- For the prime number [tex]\(2\)[/tex], the highest power is [tex]\(2^5\)[/tex] (from 32).
- For the prime number [tex]\(3\)[/tex], the highest power is [tex]\(3^2\)[/tex] (from 9).

3. Multiply these highest powers to get the LCM:
[tex]\[ \text{LCM} = 2^5 \times 3^2 \][/tex]
Calculate this step-by-step:
- [tex]\(2^5 = 32\)[/tex]
- [tex]\(3^2 = 9\)[/tex]
- Multiply these values together: [tex]\(32 \times 9 = 288\)[/tex]

Therefore, the least common denominator (LCD) for the fractions [tex]\(\frac{1}{3}\)[/tex], [tex]\(\frac{3}{4}\)[/tex], [tex]\(\frac{5}{32}\)[/tex], and [tex]\(\frac{8}{9}\)[/tex] is:

C. 288