Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To solve the equation [tex]\(100^{x+1} \div 10=0.01\)[/tex], we can follow these detailed steps:
1. Simplify the Equation: Start by getting rid of the division by 10.
[tex]\[ \frac{100^{x+1}}{10} = 0.01 \][/tex]
Multiply both sides by 10 to eliminate the fraction:
[tex]\[ 100^{x+1} = 0.01 \times 10 \][/tex]
[tex]\[ 100^{x+1} = 0.1 \][/tex]
2. Rewrite the Numbers in Exponential Form: Express both sides using base 10.
[tex]\[ 100 = 10^2 \quad \text{so} \quad 100^{x+1} = (10^2)^{x+1} = 10^{2(x+1)} \][/tex]
The equation now is:
[tex]\[ 10^{2(x+1)} = 0.1 \][/tex]
Recall that [tex]\(0.1 = 10^{-1}\)[/tex], so we can rewrite:
[tex]\[ 10^{2(x+1)} = 10^{-1} \][/tex]
3. Equate the Exponents: Since the bases (10) are the same, set the exponents equal to each other:
[tex]\[ 2(x+1) = -1 \][/tex]
4. Solve the Linear Equation:
[tex]\[ 2x + 2 = -1 \][/tex]
Subtract 2 from both sides:
[tex]\[ 2x = -3 \][/tex]
Divide by 2:
[tex]\[ x = -1.5 \][/tex]
Thus, the real solution to the equation [tex]\(100^{x+1} \div 10 = 0.01\)[/tex] is:
[tex]\[ x = -1.5 \][/tex]
Additionally, if we allow for complex solutions, we get a complex solution involving an imaginary component:
[tex]\[ x = -1.5 + 1.36437635384184i \][/tex]
So, including both the real and the complex solutions, the complete set of solutions is:
[tex]\[ x = -1.5 \quad \text{and} \quad x = -1.5 + 1.36437635384184i \][/tex]
1. Simplify the Equation: Start by getting rid of the division by 10.
[tex]\[ \frac{100^{x+1}}{10} = 0.01 \][/tex]
Multiply both sides by 10 to eliminate the fraction:
[tex]\[ 100^{x+1} = 0.01 \times 10 \][/tex]
[tex]\[ 100^{x+1} = 0.1 \][/tex]
2. Rewrite the Numbers in Exponential Form: Express both sides using base 10.
[tex]\[ 100 = 10^2 \quad \text{so} \quad 100^{x+1} = (10^2)^{x+1} = 10^{2(x+1)} \][/tex]
The equation now is:
[tex]\[ 10^{2(x+1)} = 0.1 \][/tex]
Recall that [tex]\(0.1 = 10^{-1}\)[/tex], so we can rewrite:
[tex]\[ 10^{2(x+1)} = 10^{-1} \][/tex]
3. Equate the Exponents: Since the bases (10) are the same, set the exponents equal to each other:
[tex]\[ 2(x+1) = -1 \][/tex]
4. Solve the Linear Equation:
[tex]\[ 2x + 2 = -1 \][/tex]
Subtract 2 from both sides:
[tex]\[ 2x = -3 \][/tex]
Divide by 2:
[tex]\[ x = -1.5 \][/tex]
Thus, the real solution to the equation [tex]\(100^{x+1} \div 10 = 0.01\)[/tex] is:
[tex]\[ x = -1.5 \][/tex]
Additionally, if we allow for complex solutions, we get a complex solution involving an imaginary component:
[tex]\[ x = -1.5 + 1.36437635384184i \][/tex]
So, including both the real and the complex solutions, the complete set of solutions is:
[tex]\[ x = -1.5 \quad \text{and} \quad x = -1.5 + 1.36437635384184i \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.