Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine the intensity of a sound in decibels (dB) given the equation:
[tex]\[ I(dB) = 10 \log \left[ \frac{I}{I_0} \right] \][/tex]
where [tex]\( I \)[/tex] is the intensity of the given sound and [tex]\( I_0 \)[/tex] is the threshold of hearing intensity, follow these steps:
1. Identify the given values:
- [tex]\( I = 10^8 I_0 \)[/tex]
- [tex]\( I_0 \)[/tex] is the threshold of hearing intensity, meaning that [tex]\( I_0 \)[/tex] is a reference value.
2. Substitute the given values into the equation:
[tex]\[ I(dB) = 10 \log \left[ \frac{10^8 I_0}{I_0} \right] \][/tex]
3. Simplify the fraction inside the logarithm:
[tex]\[ \frac{10^8 I_0}{I_0} = 10^8 \][/tex]
4. Rewrite the equation with the simplified fraction:
[tex]\[ I(dB) = 10 \log (10^8) \][/tex]
5. Use the logarithm property [tex]\(\log (10^8) = 8\)[/tex], because the logarithm of a number in base 10, [tex]\( \log_{10} (10^8) \)[/tex], is just the exponent 8:
[tex]\[ I(dB) = 10 \times 8 \][/tex]
6. Perform the multiplication:
[tex]\[ I(dB) = 80 \][/tex]
Hence, the intensity in decibels [tex]\( I(dB) \)[/tex] is [tex]\( 80 \)[/tex].
[tex]\[ I(dB) = 10 \log \left[ \frac{I}{I_0} \right] \][/tex]
where [tex]\( I \)[/tex] is the intensity of the given sound and [tex]\( I_0 \)[/tex] is the threshold of hearing intensity, follow these steps:
1. Identify the given values:
- [tex]\( I = 10^8 I_0 \)[/tex]
- [tex]\( I_0 \)[/tex] is the threshold of hearing intensity, meaning that [tex]\( I_0 \)[/tex] is a reference value.
2. Substitute the given values into the equation:
[tex]\[ I(dB) = 10 \log \left[ \frac{10^8 I_0}{I_0} \right] \][/tex]
3. Simplify the fraction inside the logarithm:
[tex]\[ \frac{10^8 I_0}{I_0} = 10^8 \][/tex]
4. Rewrite the equation with the simplified fraction:
[tex]\[ I(dB) = 10 \log (10^8) \][/tex]
5. Use the logarithm property [tex]\(\log (10^8) = 8\)[/tex], because the logarithm of a number in base 10, [tex]\( \log_{10} (10^8) \)[/tex], is just the exponent 8:
[tex]\[ I(dB) = 10 \times 8 \][/tex]
6. Perform the multiplication:
[tex]\[ I(dB) = 80 \][/tex]
Hence, the intensity in decibels [tex]\( I(dB) \)[/tex] is [tex]\( 80 \)[/tex].
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.