Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To find the remainder when [tex]\(2^{100} + 3^{100} + 4^{100} + 5^{100}\)[/tex] is divided by 7, we need to calculate the remainders of each term individually when divided by 7 and then sum these remainders.
### Step-by-Step Solution:
1. Calculate [tex]\(2^{100} \mod 7\)[/tex]:
The remainder when [tex]\(2^{100}\)[/tex] is divided by 7 is [tex]\(2\)[/tex].
2. Calculate [tex]\(3^{100} \mod 7\)[/tex]:
The remainder when [tex]\(3^{100}\)[/tex] is divided by 7 is [tex]\(4\)[/tex].
3. Calculate [tex]\(4^{100} \mod 7\)[/tex]:
The remainder when [tex]\(4^{100}\)[/tex] is divided by 7 is [tex]\(4\)[/tex].
4. Calculate [tex]\(5^{100} \mod 7\)[/tex]:
The remainder when [tex]\(5^{100}\)[/tex] is divided by 7 is [tex]\(2\)[/tex].
5. Sum the remainders:
[tex]\[ 2 + 4 + 4 + 2 = 12 \][/tex]
6. Calculate the remainder when this sum is divided by 7:
[tex]\[ 12 \mod 7 = 5 \][/tex]
Therefore, the remainder when [tex]\(2^{100} + 3^{100} + 4^{100} + 5^{100}\)[/tex] is divided by 7 is [tex]\( \boxed{5} \)[/tex].
### Step-by-Step Solution:
1. Calculate [tex]\(2^{100} \mod 7\)[/tex]:
The remainder when [tex]\(2^{100}\)[/tex] is divided by 7 is [tex]\(2\)[/tex].
2. Calculate [tex]\(3^{100} \mod 7\)[/tex]:
The remainder when [tex]\(3^{100}\)[/tex] is divided by 7 is [tex]\(4\)[/tex].
3. Calculate [tex]\(4^{100} \mod 7\)[/tex]:
The remainder when [tex]\(4^{100}\)[/tex] is divided by 7 is [tex]\(4\)[/tex].
4. Calculate [tex]\(5^{100} \mod 7\)[/tex]:
The remainder when [tex]\(5^{100}\)[/tex] is divided by 7 is [tex]\(2\)[/tex].
5. Sum the remainders:
[tex]\[ 2 + 4 + 4 + 2 = 12 \][/tex]
6. Calculate the remainder when this sum is divided by 7:
[tex]\[ 12 \mod 7 = 5 \][/tex]
Therefore, the remainder when [tex]\(2^{100} + 3^{100} + 4^{100} + 5^{100}\)[/tex] is divided by 7 is [tex]\( \boxed{5} \)[/tex].
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.