Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Let's solve the equation step-by-step: [tex]\(\frac{t \cdot t^3}{\sqrt{t}} = t^x\)[/tex].
1. Understanding the left-hand side: We start with the left-hand side:
[tex]\[ \frac{t \cdot t^3}{\sqrt{t}} \][/tex]
2. Combine the exponents: Notice that multiplying the terms [tex]\(t\)[/tex] and [tex]\(t^3\)[/tex] in the numerator involves adding their exponents. So,
[tex]\[ t \cdot t^3 = t^{1+3} = t^4 \][/tex]
3. Simplify the fraction: Now the expression becomes:
[tex]\[ \frac{t^4}{\sqrt{t}} \][/tex]
4. Expressing the square root in exponent form: Recall that the square root of [tex]\(t\)[/tex] can be written as:
[tex]\[ \sqrt{t} = t^{1/2} \][/tex]
5. Simplifying further by combining the exponents: Using the property of exponents for division [tex]\( \frac{a^m}{a^n} = a^{m-n} \)[/tex]:
[tex]\[ \frac{t^4}{t^{1/2}} = t^{4 - 1/2} \][/tex]
6. Subtract the exponents:
[tex]\[ 4 - \frac{1}{2} = \frac{8}{2} - \frac{1}{2} = \frac{7}{2} \][/tex]
So, the left-hand side simplifies to:
[tex]\[ t^{7/2} \][/tex]
7. Equate with the right-hand side: Now, our equation looks like:
[tex]\[ t^{7/2} = t^x \][/tex]
8. Comparing exponents: Since the bases [tex]\(t\)[/tex] are the same, the exponents must be equal. Therefore, we equate the exponents:
[tex]\[ \frac{7}{2} = x \][/tex]
Thus, the solution is:
[tex]\[ x = \frac{7}{2} \][/tex]
So, the simplified left-hand side expression is [tex]\(t^{7/2}\)[/tex], and the value of [tex]\(x\)[/tex] that satisfies the equation is [tex]\( \frac{7}{2} \)[/tex].
1. Understanding the left-hand side: We start with the left-hand side:
[tex]\[ \frac{t \cdot t^3}{\sqrt{t}} \][/tex]
2. Combine the exponents: Notice that multiplying the terms [tex]\(t\)[/tex] and [tex]\(t^3\)[/tex] in the numerator involves adding their exponents. So,
[tex]\[ t \cdot t^3 = t^{1+3} = t^4 \][/tex]
3. Simplify the fraction: Now the expression becomes:
[tex]\[ \frac{t^4}{\sqrt{t}} \][/tex]
4. Expressing the square root in exponent form: Recall that the square root of [tex]\(t\)[/tex] can be written as:
[tex]\[ \sqrt{t} = t^{1/2} \][/tex]
5. Simplifying further by combining the exponents: Using the property of exponents for division [tex]\( \frac{a^m}{a^n} = a^{m-n} \)[/tex]:
[tex]\[ \frac{t^4}{t^{1/2}} = t^{4 - 1/2} \][/tex]
6. Subtract the exponents:
[tex]\[ 4 - \frac{1}{2} = \frac{8}{2} - \frac{1}{2} = \frac{7}{2} \][/tex]
So, the left-hand side simplifies to:
[tex]\[ t^{7/2} \][/tex]
7. Equate with the right-hand side: Now, our equation looks like:
[tex]\[ t^{7/2} = t^x \][/tex]
8. Comparing exponents: Since the bases [tex]\(t\)[/tex] are the same, the exponents must be equal. Therefore, we equate the exponents:
[tex]\[ \frac{7}{2} = x \][/tex]
Thus, the solution is:
[tex]\[ x = \frac{7}{2} \][/tex]
So, the simplified left-hand side expression is [tex]\(t^{7/2}\)[/tex], and the value of [tex]\(x\)[/tex] that satisfies the equation is [tex]\( \frac{7}{2} \)[/tex].
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.