Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

Simplify the following expression:

[tex]\[ \frac{t x t^3}{\sqrt{t}} = t^x \][/tex]


Sagot :

Let's solve the equation step-by-step: [tex]\(\frac{t \cdot t^3}{\sqrt{t}} = t^x\)[/tex].

1. Understanding the left-hand side: We start with the left-hand side:
[tex]\[ \frac{t \cdot t^3}{\sqrt{t}} \][/tex]

2. Combine the exponents: Notice that multiplying the terms [tex]\(t\)[/tex] and [tex]\(t^3\)[/tex] in the numerator involves adding their exponents. So,
[tex]\[ t \cdot t^3 = t^{1+3} = t^4 \][/tex]

3. Simplify the fraction: Now the expression becomes:
[tex]\[ \frac{t^4}{\sqrt{t}} \][/tex]

4. Expressing the square root in exponent form: Recall that the square root of [tex]\(t\)[/tex] can be written as:
[tex]\[ \sqrt{t} = t^{1/2} \][/tex]

5. Simplifying further by combining the exponents: Using the property of exponents for division [tex]\( \frac{a^m}{a^n} = a^{m-n} \)[/tex]:
[tex]\[ \frac{t^4}{t^{1/2}} = t^{4 - 1/2} \][/tex]

6. Subtract the exponents:
[tex]\[ 4 - \frac{1}{2} = \frac{8}{2} - \frac{1}{2} = \frac{7}{2} \][/tex]
So, the left-hand side simplifies to:
[tex]\[ t^{7/2} \][/tex]

7. Equate with the right-hand side: Now, our equation looks like:
[tex]\[ t^{7/2} = t^x \][/tex]

8. Comparing exponents: Since the bases [tex]\(t\)[/tex] are the same, the exponents must be equal. Therefore, we equate the exponents:
[tex]\[ \frac{7}{2} = x \][/tex]

Thus, the solution is:
[tex]\[ x = \frac{7}{2} \][/tex]

So, the simplified left-hand side expression is [tex]\(t^{7/2}\)[/tex], and the value of [tex]\(x\)[/tex] that satisfies the equation is [tex]\( \frac{7}{2} \)[/tex].
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.