Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Alright! Let's prove the given statements step-by-step.
### (7.1) [tex]\( T(v) = 0 \)[/tex] if and only if [tex]\( T^(v) = 0 \)[/tex]
To prove this, we need to show two implications:
1. If [tex]\(T(v) = 0\)[/tex], then [tex]\(T^(v) = 0\)[/tex].
2. If [tex]\(T^(v) = 0\)[/tex], then [tex]\(T(v) = 0\)[/tex].
#### Implication 1: [tex]\( T(v) = 0 \implies T^(v) = 0 \)[/tex]
Assume [tex]\( T(v) = 0 \)[/tex]. We want to show that [tex]\( T^(v) = 0 \)[/tex].
Let [tex]\( u \)[/tex] be any vector in the Hilbert space.
[tex]\[ \langle T(v), u \rangle = 0 \][/tex]
Since [tex]\( T(v) = 0 \)[/tex],
[tex]\[ \langle 0, u \rangle = 0 \][/tex]
Using the property of the inner product, [tex]\( \langle 0, u \rangle = 0 \)[/tex] for all [tex]\( u \)[/tex]. Therefore, we have:
[tex]\[ \langle v, T^(u) \rangle = 0 \][/tex]
Because [tex]\( u \)[/tex] was arbitrary, this implies [tex]\( v \)[/tex] is orthogonal to every vector of the form [tex]\( T^(u) \)[/tex]. The only vector orthogonal to a dense subset in a Hilbert space is the zero vector. Thus,
[tex]\[ T^(v) = 0 \][/tex]
#### Implication 2: [tex]\( T^(v) = 0 \implies T(v) = 0 \)[/tex]
Assume [tex]\( T^(v) = 0 \)[/tex]. We want to show that [tex]\( T(v) = 0 \)[/tex].
Let [tex]\( u \)[/tex] be any vector in the Hilbert space.
[tex]\[ \langle v, T^(u) \rangle = 0 \][/tex]
Since [tex]\( T^(v) = 0 \)[/tex],
[tex]\[ \langle v, 0 \rangle = 0 \][/tex]
Using the property of the inner product, [tex]\( \langle v, 0 \rangle = 0 \)[/tex] for all [tex]\( u \)[/tex]. Therefore, we have:
[tex]\[ \langle T(v), u \rangle = 0 \][/tex]
Because [tex]\( u \)[/tex] was arbitrary, this implies [tex]\( T(v) \)[/tex] is orthogonal to every vector. The only vector orthogonal to a dense subset in a Hilbert space is the zero vector. Thus,
[tex]\[ T(v) = 0 \][/tex]
This completes the proof for [tex]\( T(v) = 0 \)[/tex] if and only if [tex]\( T^(v) = 0 \)[/tex].
### (7.2) [tex]\( T - \lambda I \)[/tex] is normal, where [tex]\( \lambda \)[/tex] is a scalar
To prove this, we need to show that [tex]\( (T - \lambda I) \)[/tex] is normal if [tex]\( T \)[/tex] is normal. Recall that an operator [tex]\( T \)[/tex] is normal if [tex]\( T T^ = T^ T \)[/tex].
First, note that [tex]\( T - \lambda I \)[/tex] is the operator [tex]\( T \)[/tex] shifted by [tex]\( \lambda \)[/tex], where [tex]\( I \)[/tex] is the identity operator.
Given that [tex]\( T - \lambda I \)[/tex]'s adjoint is [tex]\( T^ - \bar{\lambda} I \)[/tex]:
[tex]\[ (T - \lambda I)^ = T^ - \bar{\lambda}I \][/tex]
Let's show that [tex]\( (T - \lambda I) (T^ - \bar{\lambda} I) = (T^ - \bar{\lambda} I) (T - \lambda I) \)[/tex].
Expanding both sides, we get:
Left Side (LS):
[tex]\[ (T - \lambda I) (T^ - \bar{\lambda} I) = T T^ - T \bar{\lambda} I - \lambda I T^ + \lambda \bar{\lambda} I \][/tex]
Right Side (RS):
[tex]\[ (T^ - \bar{\lambda} I) (T - \lambda I) = T^ T - T^ \lambda I - \bar{\lambda} I T + \bar{\lambda} \lambda I \][/tex]
Notice:
[tex]\[ \lambda \bar{\lambda} = \bar{\lambda} \lambda \][/tex]
[tex]\[ T \bar{\lambda} I = \bar{\lambda} T I = \bar{\lambda} T \][/tex]
[tex]\[ \lambda I T^ = \lambda T^ I = \lambda T^ \][/tex]
Given that [tex]\(T\)[/tex] is normal ([tex]\(T T^ = T^ T\)[/tex]):
[tex]\[ LS = T T^ - \lambda T^ - \bar{\lambda} T + \lambda \bar{\lambda} I \][/tex]
[tex]\[ RS = T^ T - \lambda T^ - \bar{\lambda} T + \lambda \bar{\lambda} I \][/tex]
Since [tex]\( T T^ = T^ T \)[/tex],
[tex]\[ LS = TS = RS \][/tex]
Hence, [tex]\( LS = RS \)[/tex], proving that [tex]\( (T - \lambda I) (T^ - \bar{\lambda} I) = (T^* - \bar{\lambda} I) (T - \lambda I) \)[/tex].
Therefore, [tex]\( T - \lambda I \)[/tex] is normal.
This completes the proof for [tex]\( T - \lambda I \)[/tex] being normal.
### (7.1) [tex]\( T(v) = 0 \)[/tex] if and only if [tex]\( T^(v) = 0 \)[/tex]
To prove this, we need to show two implications:
1. If [tex]\(T(v) = 0\)[/tex], then [tex]\(T^(v) = 0\)[/tex].
2. If [tex]\(T^(v) = 0\)[/tex], then [tex]\(T(v) = 0\)[/tex].
#### Implication 1: [tex]\( T(v) = 0 \implies T^(v) = 0 \)[/tex]
Assume [tex]\( T(v) = 0 \)[/tex]. We want to show that [tex]\( T^(v) = 0 \)[/tex].
Let [tex]\( u \)[/tex] be any vector in the Hilbert space.
[tex]\[ \langle T(v), u \rangle = 0 \][/tex]
Since [tex]\( T(v) = 0 \)[/tex],
[tex]\[ \langle 0, u \rangle = 0 \][/tex]
Using the property of the inner product, [tex]\( \langle 0, u \rangle = 0 \)[/tex] for all [tex]\( u \)[/tex]. Therefore, we have:
[tex]\[ \langle v, T^(u) \rangle = 0 \][/tex]
Because [tex]\( u \)[/tex] was arbitrary, this implies [tex]\( v \)[/tex] is orthogonal to every vector of the form [tex]\( T^(u) \)[/tex]. The only vector orthogonal to a dense subset in a Hilbert space is the zero vector. Thus,
[tex]\[ T^(v) = 0 \][/tex]
#### Implication 2: [tex]\( T^(v) = 0 \implies T(v) = 0 \)[/tex]
Assume [tex]\( T^(v) = 0 \)[/tex]. We want to show that [tex]\( T(v) = 0 \)[/tex].
Let [tex]\( u \)[/tex] be any vector in the Hilbert space.
[tex]\[ \langle v, T^(u) \rangle = 0 \][/tex]
Since [tex]\( T^(v) = 0 \)[/tex],
[tex]\[ \langle v, 0 \rangle = 0 \][/tex]
Using the property of the inner product, [tex]\( \langle v, 0 \rangle = 0 \)[/tex] for all [tex]\( u \)[/tex]. Therefore, we have:
[tex]\[ \langle T(v), u \rangle = 0 \][/tex]
Because [tex]\( u \)[/tex] was arbitrary, this implies [tex]\( T(v) \)[/tex] is orthogonal to every vector. The only vector orthogonal to a dense subset in a Hilbert space is the zero vector. Thus,
[tex]\[ T(v) = 0 \][/tex]
This completes the proof for [tex]\( T(v) = 0 \)[/tex] if and only if [tex]\( T^(v) = 0 \)[/tex].
### (7.2) [tex]\( T - \lambda I \)[/tex] is normal, where [tex]\( \lambda \)[/tex] is a scalar
To prove this, we need to show that [tex]\( (T - \lambda I) \)[/tex] is normal if [tex]\( T \)[/tex] is normal. Recall that an operator [tex]\( T \)[/tex] is normal if [tex]\( T T^ = T^ T \)[/tex].
First, note that [tex]\( T - \lambda I \)[/tex] is the operator [tex]\( T \)[/tex] shifted by [tex]\( \lambda \)[/tex], where [tex]\( I \)[/tex] is the identity operator.
Given that [tex]\( T - \lambda I \)[/tex]'s adjoint is [tex]\( T^ - \bar{\lambda} I \)[/tex]:
[tex]\[ (T - \lambda I)^ = T^ - \bar{\lambda}I \][/tex]
Let's show that [tex]\( (T - \lambda I) (T^ - \bar{\lambda} I) = (T^ - \bar{\lambda} I) (T - \lambda I) \)[/tex].
Expanding both sides, we get:
Left Side (LS):
[tex]\[ (T - \lambda I) (T^ - \bar{\lambda} I) = T T^ - T \bar{\lambda} I - \lambda I T^ + \lambda \bar{\lambda} I \][/tex]
Right Side (RS):
[tex]\[ (T^ - \bar{\lambda} I) (T - \lambda I) = T^ T - T^ \lambda I - \bar{\lambda} I T + \bar{\lambda} \lambda I \][/tex]
Notice:
[tex]\[ \lambda \bar{\lambda} = \bar{\lambda} \lambda \][/tex]
[tex]\[ T \bar{\lambda} I = \bar{\lambda} T I = \bar{\lambda} T \][/tex]
[tex]\[ \lambda I T^ = \lambda T^ I = \lambda T^ \][/tex]
Given that [tex]\(T\)[/tex] is normal ([tex]\(T T^ = T^ T\)[/tex]):
[tex]\[ LS = T T^ - \lambda T^ - \bar{\lambda} T + \lambda \bar{\lambda} I \][/tex]
[tex]\[ RS = T^ T - \lambda T^ - \bar{\lambda} T + \lambda \bar{\lambda} I \][/tex]
Since [tex]\( T T^ = T^ T \)[/tex],
[tex]\[ LS = TS = RS \][/tex]
Hence, [tex]\( LS = RS \)[/tex], proving that [tex]\( (T - \lambda I) (T^ - \bar{\lambda} I) = (T^* - \bar{\lambda} I) (T - \lambda I) \)[/tex].
Therefore, [tex]\( T - \lambda I \)[/tex] is normal.
This completes the proof for [tex]\( T - \lambda I \)[/tex] being normal.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.