Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Alright! Let's prove the given statements step-by-step.
### (7.1) [tex]\( T(v) = 0 \)[/tex] if and only if [tex]\( T^(v) = 0 \)[/tex]
To prove this, we need to show two implications:
1. If [tex]\(T(v) = 0\)[/tex], then [tex]\(T^(v) = 0\)[/tex].
2. If [tex]\(T^(v) = 0\)[/tex], then [tex]\(T(v) = 0\)[/tex].
#### Implication 1: [tex]\( T(v) = 0 \implies T^(v) = 0 \)[/tex]
Assume [tex]\( T(v) = 0 \)[/tex]. We want to show that [tex]\( T^(v) = 0 \)[/tex].
Let [tex]\( u \)[/tex] be any vector in the Hilbert space.
[tex]\[ \langle T(v), u \rangle = 0 \][/tex]
Since [tex]\( T(v) = 0 \)[/tex],
[tex]\[ \langle 0, u \rangle = 0 \][/tex]
Using the property of the inner product, [tex]\( \langle 0, u \rangle = 0 \)[/tex] for all [tex]\( u \)[/tex]. Therefore, we have:
[tex]\[ \langle v, T^(u) \rangle = 0 \][/tex]
Because [tex]\( u \)[/tex] was arbitrary, this implies [tex]\( v \)[/tex] is orthogonal to every vector of the form [tex]\( T^(u) \)[/tex]. The only vector orthogonal to a dense subset in a Hilbert space is the zero vector. Thus,
[tex]\[ T^(v) = 0 \][/tex]
#### Implication 2: [tex]\( T^(v) = 0 \implies T(v) = 0 \)[/tex]
Assume [tex]\( T^(v) = 0 \)[/tex]. We want to show that [tex]\( T(v) = 0 \)[/tex].
Let [tex]\( u \)[/tex] be any vector in the Hilbert space.
[tex]\[ \langle v, T^(u) \rangle = 0 \][/tex]
Since [tex]\( T^(v) = 0 \)[/tex],
[tex]\[ \langle v, 0 \rangle = 0 \][/tex]
Using the property of the inner product, [tex]\( \langle v, 0 \rangle = 0 \)[/tex] for all [tex]\( u \)[/tex]. Therefore, we have:
[tex]\[ \langle T(v), u \rangle = 0 \][/tex]
Because [tex]\( u \)[/tex] was arbitrary, this implies [tex]\( T(v) \)[/tex] is orthogonal to every vector. The only vector orthogonal to a dense subset in a Hilbert space is the zero vector. Thus,
[tex]\[ T(v) = 0 \][/tex]
This completes the proof for [tex]\( T(v) = 0 \)[/tex] if and only if [tex]\( T^(v) = 0 \)[/tex].
### (7.2) [tex]\( T - \lambda I \)[/tex] is normal, where [tex]\( \lambda \)[/tex] is a scalar
To prove this, we need to show that [tex]\( (T - \lambda I) \)[/tex] is normal if [tex]\( T \)[/tex] is normal. Recall that an operator [tex]\( T \)[/tex] is normal if [tex]\( T T^ = T^ T \)[/tex].
First, note that [tex]\( T - \lambda I \)[/tex] is the operator [tex]\( T \)[/tex] shifted by [tex]\( \lambda \)[/tex], where [tex]\( I \)[/tex] is the identity operator.
Given that [tex]\( T - \lambda I \)[/tex]'s adjoint is [tex]\( T^ - \bar{\lambda} I \)[/tex]:
[tex]\[ (T - \lambda I)^ = T^ - \bar{\lambda}I \][/tex]
Let's show that [tex]\( (T - \lambda I) (T^ - \bar{\lambda} I) = (T^ - \bar{\lambda} I) (T - \lambda I) \)[/tex].
Expanding both sides, we get:
Left Side (LS):
[tex]\[ (T - \lambda I) (T^ - \bar{\lambda} I) = T T^ - T \bar{\lambda} I - \lambda I T^ + \lambda \bar{\lambda} I \][/tex]
Right Side (RS):
[tex]\[ (T^ - \bar{\lambda} I) (T - \lambda I) = T^ T - T^ \lambda I - \bar{\lambda} I T + \bar{\lambda} \lambda I \][/tex]
Notice:
[tex]\[ \lambda \bar{\lambda} = \bar{\lambda} \lambda \][/tex]
[tex]\[ T \bar{\lambda} I = \bar{\lambda} T I = \bar{\lambda} T \][/tex]
[tex]\[ \lambda I T^ = \lambda T^ I = \lambda T^ \][/tex]
Given that [tex]\(T\)[/tex] is normal ([tex]\(T T^ = T^ T\)[/tex]):
[tex]\[ LS = T T^ - \lambda T^ - \bar{\lambda} T + \lambda \bar{\lambda} I \][/tex]
[tex]\[ RS = T^ T - \lambda T^ - \bar{\lambda} T + \lambda \bar{\lambda} I \][/tex]
Since [tex]\( T T^ = T^ T \)[/tex],
[tex]\[ LS = TS = RS \][/tex]
Hence, [tex]\( LS = RS \)[/tex], proving that [tex]\( (T - \lambda I) (T^ - \bar{\lambda} I) = (T^* - \bar{\lambda} I) (T - \lambda I) \)[/tex].
Therefore, [tex]\( T - \lambda I \)[/tex] is normal.
This completes the proof for [tex]\( T - \lambda I \)[/tex] being normal.
### (7.1) [tex]\( T(v) = 0 \)[/tex] if and only if [tex]\( T^(v) = 0 \)[/tex]
To prove this, we need to show two implications:
1. If [tex]\(T(v) = 0\)[/tex], then [tex]\(T^(v) = 0\)[/tex].
2. If [tex]\(T^(v) = 0\)[/tex], then [tex]\(T(v) = 0\)[/tex].
#### Implication 1: [tex]\( T(v) = 0 \implies T^(v) = 0 \)[/tex]
Assume [tex]\( T(v) = 0 \)[/tex]. We want to show that [tex]\( T^(v) = 0 \)[/tex].
Let [tex]\( u \)[/tex] be any vector in the Hilbert space.
[tex]\[ \langle T(v), u \rangle = 0 \][/tex]
Since [tex]\( T(v) = 0 \)[/tex],
[tex]\[ \langle 0, u \rangle = 0 \][/tex]
Using the property of the inner product, [tex]\( \langle 0, u \rangle = 0 \)[/tex] for all [tex]\( u \)[/tex]. Therefore, we have:
[tex]\[ \langle v, T^(u) \rangle = 0 \][/tex]
Because [tex]\( u \)[/tex] was arbitrary, this implies [tex]\( v \)[/tex] is orthogonal to every vector of the form [tex]\( T^(u) \)[/tex]. The only vector orthogonal to a dense subset in a Hilbert space is the zero vector. Thus,
[tex]\[ T^(v) = 0 \][/tex]
#### Implication 2: [tex]\( T^(v) = 0 \implies T(v) = 0 \)[/tex]
Assume [tex]\( T^(v) = 0 \)[/tex]. We want to show that [tex]\( T(v) = 0 \)[/tex].
Let [tex]\( u \)[/tex] be any vector in the Hilbert space.
[tex]\[ \langle v, T^(u) \rangle = 0 \][/tex]
Since [tex]\( T^(v) = 0 \)[/tex],
[tex]\[ \langle v, 0 \rangle = 0 \][/tex]
Using the property of the inner product, [tex]\( \langle v, 0 \rangle = 0 \)[/tex] for all [tex]\( u \)[/tex]. Therefore, we have:
[tex]\[ \langle T(v), u \rangle = 0 \][/tex]
Because [tex]\( u \)[/tex] was arbitrary, this implies [tex]\( T(v) \)[/tex] is orthogonal to every vector. The only vector orthogonal to a dense subset in a Hilbert space is the zero vector. Thus,
[tex]\[ T(v) = 0 \][/tex]
This completes the proof for [tex]\( T(v) = 0 \)[/tex] if and only if [tex]\( T^(v) = 0 \)[/tex].
### (7.2) [tex]\( T - \lambda I \)[/tex] is normal, where [tex]\( \lambda \)[/tex] is a scalar
To prove this, we need to show that [tex]\( (T - \lambda I) \)[/tex] is normal if [tex]\( T \)[/tex] is normal. Recall that an operator [tex]\( T \)[/tex] is normal if [tex]\( T T^ = T^ T \)[/tex].
First, note that [tex]\( T - \lambda I \)[/tex] is the operator [tex]\( T \)[/tex] shifted by [tex]\( \lambda \)[/tex], where [tex]\( I \)[/tex] is the identity operator.
Given that [tex]\( T - \lambda I \)[/tex]'s adjoint is [tex]\( T^ - \bar{\lambda} I \)[/tex]:
[tex]\[ (T - \lambda I)^ = T^ - \bar{\lambda}I \][/tex]
Let's show that [tex]\( (T - \lambda I) (T^ - \bar{\lambda} I) = (T^ - \bar{\lambda} I) (T - \lambda I) \)[/tex].
Expanding both sides, we get:
Left Side (LS):
[tex]\[ (T - \lambda I) (T^ - \bar{\lambda} I) = T T^ - T \bar{\lambda} I - \lambda I T^ + \lambda \bar{\lambda} I \][/tex]
Right Side (RS):
[tex]\[ (T^ - \bar{\lambda} I) (T - \lambda I) = T^ T - T^ \lambda I - \bar{\lambda} I T + \bar{\lambda} \lambda I \][/tex]
Notice:
[tex]\[ \lambda \bar{\lambda} = \bar{\lambda} \lambda \][/tex]
[tex]\[ T \bar{\lambda} I = \bar{\lambda} T I = \bar{\lambda} T \][/tex]
[tex]\[ \lambda I T^ = \lambda T^ I = \lambda T^ \][/tex]
Given that [tex]\(T\)[/tex] is normal ([tex]\(T T^ = T^ T\)[/tex]):
[tex]\[ LS = T T^ - \lambda T^ - \bar{\lambda} T + \lambda \bar{\lambda} I \][/tex]
[tex]\[ RS = T^ T - \lambda T^ - \bar{\lambda} T + \lambda \bar{\lambda} I \][/tex]
Since [tex]\( T T^ = T^ T \)[/tex],
[tex]\[ LS = TS = RS \][/tex]
Hence, [tex]\( LS = RS \)[/tex], proving that [tex]\( (T - \lambda I) (T^ - \bar{\lambda} I) = (T^* - \bar{\lambda} I) (T - \lambda I) \)[/tex].
Therefore, [tex]\( T - \lambda I \)[/tex] is normal.
This completes the proof for [tex]\( T - \lambda I \)[/tex] being normal.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.