At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine if the expression [tex]\(-\frac{y^5}{4} - 3y^3 - y^4\)[/tex] is a polynomial, and if so, to find its type and degree, let's analyze the expression step-by-step.
1. Identify the terms in the expression:
The given expression is:
[tex]\[ -\frac{y^5}{4} - 3y^3 - y^4 \][/tex]
2. Confirm if the expression is a polynomial:
A polynomial is an algebraic expression made up of terms which are summed or subtracted together, where each term includes a variable raised to a non-negative integer power and has a coefficient. In simpler terms, each term should have the form [tex]\(a y^n\)[/tex] where [tex]\(a\)[/tex] is a real number and [tex]\(n\)[/tex] is a non-negative integer.
Let's examine each term given:
- The term [tex]\(-\frac{y^5}{4}\)[/tex] is [tex]\(-\frac{1}{4} y^5\)[/tex], which has a power of [tex]\(5\)[/tex], and [tex]\(\frac{1}{4}\)[/tex] is a real number.
- The term [tex]\(-3y^3\)[/tex] has a power of [tex]\(3\)[/tex], and [tex]\(-3\)[/tex] is a real number.
- The term [tex]\(-y^4\)[/tex] is [tex]\(-1 \cdot y^4\)[/tex] with a power of [tex]\(4\)[/tex] and [tex]\(-1\)[/tex] is a real number.
All terms fit the form of a polynomial.
3. Degree of the polynomial:
The degree of a polynomial is the highest power of the variable within the expression. From the given terms, the highest power of [tex]\(y\)[/tex] is [tex]\(5\)[/tex].
Therefore, the degree of this polynomial is [tex]\(5\)[/tex].
4. Type of polynomial:
The type of polynomial based on its terms:
- Based on the highest degree term (-[tex]\(\frac{1}{4} y^5\)[/tex]), it is a fifth-degree polynomial.
- The expression is not sparse because it doesn't have gaps between the degrees (each step down in power only skips degree [tex]\(2\)[/tex], which is common and does not necessarily denote sparsity in this context).
Therefore,
- The given expression [tex]\(-\frac{y^5}{4} - 3y^3 - y^4\)[/tex] is a polynomial.
- The degree of the polynomial is [tex]\(5\)[/tex].
- The type of the polynomial is a standard polynomial (if additional specificity is required beyond standard polynomial types such as monomial, binomial, or trinomial, it might loosely fit a sparse polynomial description due to the missing [tex]\(y^2\)[/tex] term, but typically sparse implies larger gaps between significant terms).
Thus, summarizing:
[tex]\[ \text{The expression is a polynomial, its degree is 5, and it is a sparse polynomial.} \][/tex]
1. Identify the terms in the expression:
The given expression is:
[tex]\[ -\frac{y^5}{4} - 3y^3 - y^4 \][/tex]
2. Confirm if the expression is a polynomial:
A polynomial is an algebraic expression made up of terms which are summed or subtracted together, where each term includes a variable raised to a non-negative integer power and has a coefficient. In simpler terms, each term should have the form [tex]\(a y^n\)[/tex] where [tex]\(a\)[/tex] is a real number and [tex]\(n\)[/tex] is a non-negative integer.
Let's examine each term given:
- The term [tex]\(-\frac{y^5}{4}\)[/tex] is [tex]\(-\frac{1}{4} y^5\)[/tex], which has a power of [tex]\(5\)[/tex], and [tex]\(\frac{1}{4}\)[/tex] is a real number.
- The term [tex]\(-3y^3\)[/tex] has a power of [tex]\(3\)[/tex], and [tex]\(-3\)[/tex] is a real number.
- The term [tex]\(-y^4\)[/tex] is [tex]\(-1 \cdot y^4\)[/tex] with a power of [tex]\(4\)[/tex] and [tex]\(-1\)[/tex] is a real number.
All terms fit the form of a polynomial.
3. Degree of the polynomial:
The degree of a polynomial is the highest power of the variable within the expression. From the given terms, the highest power of [tex]\(y\)[/tex] is [tex]\(5\)[/tex].
Therefore, the degree of this polynomial is [tex]\(5\)[/tex].
4. Type of polynomial:
The type of polynomial based on its terms:
- Based on the highest degree term (-[tex]\(\frac{1}{4} y^5\)[/tex]), it is a fifth-degree polynomial.
- The expression is not sparse because it doesn't have gaps between the degrees (each step down in power only skips degree [tex]\(2\)[/tex], which is common and does not necessarily denote sparsity in this context).
Therefore,
- The given expression [tex]\(-\frac{y^5}{4} - 3y^3 - y^4\)[/tex] is a polynomial.
- The degree of the polynomial is [tex]\(5\)[/tex].
- The type of the polynomial is a standard polynomial (if additional specificity is required beyond standard polynomial types such as monomial, binomial, or trinomial, it might loosely fit a sparse polynomial description due to the missing [tex]\(y^2\)[/tex] term, but typically sparse implies larger gaps between significant terms).
Thus, summarizing:
[tex]\[ \text{The expression is a polynomial, its degree is 5, and it is a sparse polynomial.} \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.