Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the constant term in the expansion of the binomial [tex]\((x-2)^4\)[/tex], we can use the Binomial Theorem. The Binomial Theorem states:
[tex]\[ (a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \][/tex]
In this case, [tex]\(a = x\)[/tex], [tex]\(b = -2\)[/tex], and [tex]\(n = 4\)[/tex]. The expansion of [tex]\((x-2)^4\)[/tex] can be written as:
[tex]\[ (x-2)^4 = \sum_{k=0}^{4} \binom{4}{k} x^{4-k} (-2)^k \][/tex]
We are specifically interested in the constant term in the expansion. The constant term is the term where there is no [tex]\(x\)[/tex] present, meaning [tex]\(x\)[/tex] must be raised to the power of 0. For this to happen, we need [tex]\(4-k = 0\)[/tex], that is, [tex]\(k = 4\)[/tex].
With [tex]\(k = 4\)[/tex], the constant term is:
[tex]\[ \binom{4}{4} x^{4-4} (-2)^4 \][/tex]
Simplifying each part, we have:
[tex]\[ \binom{4}{4} = 1 \][/tex]
[tex]\[ x^0 = 1 \][/tex]
[tex]\[ (-2)^4 = 16 \][/tex]
Therefore, the constant term is:
[tex]\[ 1 \cdot 1 \cdot 16 = 16 \][/tex]
So, the constant term in the expansion of [tex]\((x-2)^4\)[/tex] is:
[tex]\[ \boxed{16} \][/tex]
Hence, the correct answer is B. 16.
[tex]\[ (a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \][/tex]
In this case, [tex]\(a = x\)[/tex], [tex]\(b = -2\)[/tex], and [tex]\(n = 4\)[/tex]. The expansion of [tex]\((x-2)^4\)[/tex] can be written as:
[tex]\[ (x-2)^4 = \sum_{k=0}^{4} \binom{4}{k} x^{4-k} (-2)^k \][/tex]
We are specifically interested in the constant term in the expansion. The constant term is the term where there is no [tex]\(x\)[/tex] present, meaning [tex]\(x\)[/tex] must be raised to the power of 0. For this to happen, we need [tex]\(4-k = 0\)[/tex], that is, [tex]\(k = 4\)[/tex].
With [tex]\(k = 4\)[/tex], the constant term is:
[tex]\[ \binom{4}{4} x^{4-4} (-2)^4 \][/tex]
Simplifying each part, we have:
[tex]\[ \binom{4}{4} = 1 \][/tex]
[tex]\[ x^0 = 1 \][/tex]
[tex]\[ (-2)^4 = 16 \][/tex]
Therefore, the constant term is:
[tex]\[ 1 \cdot 1 \cdot 16 = 16 \][/tex]
So, the constant term in the expansion of [tex]\((x-2)^4\)[/tex] is:
[tex]\[ \boxed{16} \][/tex]
Hence, the correct answer is B. 16.
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.