Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine which function best models the data provided in the table for the estimated number of bees [tex]\( y \)[/tex] in a hive after [tex]\( x \)[/tex] days, we compare different models and evaluate their respective errors. Here are the proposed functions:
1. [tex]\( y = 9958 \cdot (0.972)^x \)[/tex]
2. [tex]\( y = 0.972 \cdot (9958)^x \)[/tex]
3. [tex]\( y = 9219 \cdot x - 150 \)[/tex]
4. [tex]\( y = -150 \cdot x + 9219 \)[/tex]
To make this comparison, we calculate the squared errors for each model. The squared error measures how much the estimated values deviate from the actual values in the data set. Smaller errors indicate a better fit.
Given the results for the errors:
1. [tex]\( y = 9958 \cdot (0.972)^x \)[/tex] has a squared error of [tex]\( 5950.85 \)[/tex]
2. [tex]\( y = 0.972 \cdot (9958)^x \)[/tex] has a squared error of approximately [tex]\( 6.20218510682898e+399 \)[/tex]
3. [tex]\( y = 9219 \cdot x - 150 \)[/tex] has a squared error of [tex]\( 456917467500 \)[/tex]
4. [tex]\( y = -150 \cdot x + 9219 \)[/tex] has a squared error of [tex]\( 1774566 \)[/tex]
Analyzing the errors:
- The exponential model [tex]\( y = 0.972 \cdot (9958)^x \)[/tex] has an extremely large error, indicating it does not fit the data well at all.
- The linear models [tex]\( y = 9219 \cdot x - 150 \)[/tex] and [tex]\( y = -150 \cdot x + 9219 \)[/tex] also have significantly larger errors compared to the first model.
- The exponential model [tex]\( y = 9958 \cdot (0.972)^x \)[/tex] has the smallest error among all the models.
Therefore, the function that best models the data is:
[tex]\[ y = 9958 \cdot (0.972)^x \][/tex]
This function provides the closest estimates to the actual number of bees in the hive over time, as evidenced by the lowest squared error.
1. [tex]\( y = 9958 \cdot (0.972)^x \)[/tex]
2. [tex]\( y = 0.972 \cdot (9958)^x \)[/tex]
3. [tex]\( y = 9219 \cdot x - 150 \)[/tex]
4. [tex]\( y = -150 \cdot x + 9219 \)[/tex]
To make this comparison, we calculate the squared errors for each model. The squared error measures how much the estimated values deviate from the actual values in the data set. Smaller errors indicate a better fit.
Given the results for the errors:
1. [tex]\( y = 9958 \cdot (0.972)^x \)[/tex] has a squared error of [tex]\( 5950.85 \)[/tex]
2. [tex]\( y = 0.972 \cdot (9958)^x \)[/tex] has a squared error of approximately [tex]\( 6.20218510682898e+399 \)[/tex]
3. [tex]\( y = 9219 \cdot x - 150 \)[/tex] has a squared error of [tex]\( 456917467500 \)[/tex]
4. [tex]\( y = -150 \cdot x + 9219 \)[/tex] has a squared error of [tex]\( 1774566 \)[/tex]
Analyzing the errors:
- The exponential model [tex]\( y = 0.972 \cdot (9958)^x \)[/tex] has an extremely large error, indicating it does not fit the data well at all.
- The linear models [tex]\( y = 9219 \cdot x - 150 \)[/tex] and [tex]\( y = -150 \cdot x + 9219 \)[/tex] also have significantly larger errors compared to the first model.
- The exponential model [tex]\( y = 9958 \cdot (0.972)^x \)[/tex] has the smallest error among all the models.
Therefore, the function that best models the data is:
[tex]\[ y = 9958 \cdot (0.972)^x \][/tex]
This function provides the closest estimates to the actual number of bees in the hive over time, as evidenced by the lowest squared error.
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.