Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Factor completely [tex]$x^2 + 16$[/tex].

A. [tex]\((x + 4)(x + 4)\)[/tex]
B. [tex]\((x + 4)(x - 4)\)[/tex]
C. Prime
D. [tex]\((x - 4)(x - 4)\)[/tex]

Sagot :

To determine if the expression [tex]\(x^2 + 16\)[/tex] can be factored completely, let's analyze it step-by-step:

1. Observation of the Form:
The given expression [tex]\(x^2 + 16\)[/tex] is a polynomial in the form of [tex]\(x^2 + c\)[/tex], where [tex]\(c\)[/tex] is a positive constant (16 in this case).

2. Factorization Check:
- We know that certain types of expressions have specific factorization formulas. For instance, the difference of squares is [tex]\(a^2 - b^2 = (a + b)(a - b)\)[/tex], and perfect square trinomials like [tex]\(a^2 + 2ab + b^2 = (a + b)^2\)[/tex].
- However, [tex]\(x^2 + 16\)[/tex] is not a difference of squares; instead, it is a sum of squares.

3. Sum of Squares:
- Unlike the difference of squares, the sum of squares does not have a factorization over the real numbers in terms of real coefficients. In other words, [tex]\(x^2 + c\)[/tex] cannot be factored further into polynomials with real coefficients unless we allow for complex numbers.

4. Conclusion:
Since [tex]\(x^2 + 16\)[/tex] does not fit any recognizable factorization patterns and cannot be factored into real polynomials, it is considered a prime polynomial.

Therefore, the expression [tex]\(x^2 + 16\)[/tex] is not factorable over the real numbers and is thus Prime.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.