At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine what expression is equivalent to [tex]\(-3x^2 - 24x - 36\)[/tex], we need to factorize the quadratic expression. Here is the step-by-step solution:
1. Identify the common factor:
The first step in factorizing a quadratic expression is to determine if there is a common factor for all terms. In this case, [tex]\(-3\)[/tex] is a common factor.
2. Factor out the common factor:
We can factor [tex]\(-3\)[/tex] out of each term in the expression:
[tex]\[ -3(x^2 + 8x + 12) \][/tex]
3. Factorize the quadratic expression inside the parentheses:
Now, we need to factorize [tex]\(x^2 + 8x + 12\)[/tex].
- Look for two numbers that multiply to [tex]\(12\)[/tex] (the constant term) and add up to [tex]\(8\)[/tex] (the coefficient of [tex]\(x\)[/tex]).
- Those numbers are [tex]\(6\)[/tex] and [tex]\(2\)[/tex] because [tex]\(6 \times 12 = 12\)[/tex] and [tex]\(6 + 2 = 8\)[/tex].
4. Write the quadratic expression as a product of two binomials:
Therefore, [tex]\(x^2 + 8x + 12\)[/tex] can be written as:
[tex]\[ (x + 6)(x + 2) \][/tex]
5. Combine the factored terms:
Substituting back into the original expression, we get:
[tex]\[ -3(x + 6)(x + 2) \][/tex]
Hence, the factored form of the given expression [tex]\(-3x^2 - 24x - 36\)[/tex] is [tex]\(-3(x + 6)(x + 2)\)[/tex].
1. Identify the common factor:
The first step in factorizing a quadratic expression is to determine if there is a common factor for all terms. In this case, [tex]\(-3\)[/tex] is a common factor.
2. Factor out the common factor:
We can factor [tex]\(-3\)[/tex] out of each term in the expression:
[tex]\[ -3(x^2 + 8x + 12) \][/tex]
3. Factorize the quadratic expression inside the parentheses:
Now, we need to factorize [tex]\(x^2 + 8x + 12\)[/tex].
- Look for two numbers that multiply to [tex]\(12\)[/tex] (the constant term) and add up to [tex]\(8\)[/tex] (the coefficient of [tex]\(x\)[/tex]).
- Those numbers are [tex]\(6\)[/tex] and [tex]\(2\)[/tex] because [tex]\(6 \times 12 = 12\)[/tex] and [tex]\(6 + 2 = 8\)[/tex].
4. Write the quadratic expression as a product of two binomials:
Therefore, [tex]\(x^2 + 8x + 12\)[/tex] can be written as:
[tex]\[ (x + 6)(x + 2) \][/tex]
5. Combine the factored terms:
Substituting back into the original expression, we get:
[tex]\[ -3(x + 6)(x + 2) \][/tex]
Hence, the factored form of the given expression [tex]\(-3x^2 - 24x - 36\)[/tex] is [tex]\(-3(x + 6)(x + 2)\)[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.