Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To completely factor the polynomial [tex]\( 16x^8 - 1 \)[/tex], we can follow these steps:
1. Recognize the difference of squares:
[tex]\[ 16x^8 - 1 = (4x^4)^2 - 1^2 \][/tex]
The difference of squares formula [tex]\( a^2 - b^2 = (a - b)(a + b) \)[/tex] allows us to rewrite this as:
[tex]\[ (4x^4 - 1)(4x^4 + 1) \][/tex]
Let's further factor each part:
2. Factor the first part, [tex]\( 4x^4 - 1 \)[/tex], again as a difference of squares:
[tex]\[ 4x^4 - 1 = (2x^2)^2 - 1^2 = (2x^2 - 1)(2x^2 + 1) \][/tex]
3. Check if the second part, [tex]\( 4x^4 + 1 \)[/tex], can be factored further:
The term [tex]\( 4x^4 + 1 \)[/tex] can further be examined using advanced factorization techniques, breaking it down:
[tex]\[ 4x^4 + 1 = (2x^2)^2 + (1)^2 \][/tex]
This can be expressed using advanced factorization as follows:
[tex]\[ 4x^4 + 1 = (2x^2 - 2x + 1)(2x^2 + 2x + 1) \][/tex]
4. Combine all the factors:
Putting it all together, we get:
[tex]\[ 16x^8 - 1 = (2x^2 - 1)(2x^2 + 1)(2x^2 - 2x + 1)(2x^2 + 2x + 1) \][/tex]
Therefore, the completely factored form of [tex]\( 16x^8 - 1 \)[/tex] is:
[tex]\[ (2x^2 - 1)(2x^2 + 1)(2x^2 - 2x + 1)(2x^2 + 2x + 1) \][/tex]
1. Recognize the difference of squares:
[tex]\[ 16x^8 - 1 = (4x^4)^2 - 1^2 \][/tex]
The difference of squares formula [tex]\( a^2 - b^2 = (a - b)(a + b) \)[/tex] allows us to rewrite this as:
[tex]\[ (4x^4 - 1)(4x^4 + 1) \][/tex]
Let's further factor each part:
2. Factor the first part, [tex]\( 4x^4 - 1 \)[/tex], again as a difference of squares:
[tex]\[ 4x^4 - 1 = (2x^2)^2 - 1^2 = (2x^2 - 1)(2x^2 + 1) \][/tex]
3. Check if the second part, [tex]\( 4x^4 + 1 \)[/tex], can be factored further:
The term [tex]\( 4x^4 + 1 \)[/tex] can further be examined using advanced factorization techniques, breaking it down:
[tex]\[ 4x^4 + 1 = (2x^2)^2 + (1)^2 \][/tex]
This can be expressed using advanced factorization as follows:
[tex]\[ 4x^4 + 1 = (2x^2 - 2x + 1)(2x^2 + 2x + 1) \][/tex]
4. Combine all the factors:
Putting it all together, we get:
[tex]\[ 16x^8 - 1 = (2x^2 - 1)(2x^2 + 1)(2x^2 - 2x + 1)(2x^2 + 2x + 1) \][/tex]
Therefore, the completely factored form of [tex]\( 16x^8 - 1 \)[/tex] is:
[tex]\[ (2x^2 - 1)(2x^2 + 1)(2x^2 - 2x + 1)(2x^2 + 2x + 1) \][/tex]
Answer:
B. (2x^2 - 1)(2x^2 + 1)(4x^4 + 1)
Step-by-step explanation:
Factor completely 16 x^8 - 1.
This is the difference of squares, a^2 - b^2 = (a-b) (a+b)
(4x^4)^2 - 1^2 where 4x^4 = a and 1 = b
16x^8 -1 = (4x^4 -1) (4x^4+1)
4x^4 -1 is also a difference of squares where a = 2x^2 and b=1
16x^8 -1 = (2x^2 -1)(2x^2+1) (4x^4+1)
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.