At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To completely factor the polynomial [tex]\( 16x^8 - 1 \)[/tex], we can follow these steps:
1. Recognize the difference of squares:
[tex]\[ 16x^8 - 1 = (4x^4)^2 - 1^2 \][/tex]
The difference of squares formula [tex]\( a^2 - b^2 = (a - b)(a + b) \)[/tex] allows us to rewrite this as:
[tex]\[ (4x^4 - 1)(4x^4 + 1) \][/tex]
Let's further factor each part:
2. Factor the first part, [tex]\( 4x^4 - 1 \)[/tex], again as a difference of squares:
[tex]\[ 4x^4 - 1 = (2x^2)^2 - 1^2 = (2x^2 - 1)(2x^2 + 1) \][/tex]
3. Check if the second part, [tex]\( 4x^4 + 1 \)[/tex], can be factored further:
The term [tex]\( 4x^4 + 1 \)[/tex] can further be examined using advanced factorization techniques, breaking it down:
[tex]\[ 4x^4 + 1 = (2x^2)^2 + (1)^2 \][/tex]
This can be expressed using advanced factorization as follows:
[tex]\[ 4x^4 + 1 = (2x^2 - 2x + 1)(2x^2 + 2x + 1) \][/tex]
4. Combine all the factors:
Putting it all together, we get:
[tex]\[ 16x^8 - 1 = (2x^2 - 1)(2x^2 + 1)(2x^2 - 2x + 1)(2x^2 + 2x + 1) \][/tex]
Therefore, the completely factored form of [tex]\( 16x^8 - 1 \)[/tex] is:
[tex]\[ (2x^2 - 1)(2x^2 + 1)(2x^2 - 2x + 1)(2x^2 + 2x + 1) \][/tex]
1. Recognize the difference of squares:
[tex]\[ 16x^8 - 1 = (4x^4)^2 - 1^2 \][/tex]
The difference of squares formula [tex]\( a^2 - b^2 = (a - b)(a + b) \)[/tex] allows us to rewrite this as:
[tex]\[ (4x^4 - 1)(4x^4 + 1) \][/tex]
Let's further factor each part:
2. Factor the first part, [tex]\( 4x^4 - 1 \)[/tex], again as a difference of squares:
[tex]\[ 4x^4 - 1 = (2x^2)^2 - 1^2 = (2x^2 - 1)(2x^2 + 1) \][/tex]
3. Check if the second part, [tex]\( 4x^4 + 1 \)[/tex], can be factored further:
The term [tex]\( 4x^4 + 1 \)[/tex] can further be examined using advanced factorization techniques, breaking it down:
[tex]\[ 4x^4 + 1 = (2x^2)^2 + (1)^2 \][/tex]
This can be expressed using advanced factorization as follows:
[tex]\[ 4x^4 + 1 = (2x^2 - 2x + 1)(2x^2 + 2x + 1) \][/tex]
4. Combine all the factors:
Putting it all together, we get:
[tex]\[ 16x^8 - 1 = (2x^2 - 1)(2x^2 + 1)(2x^2 - 2x + 1)(2x^2 + 2x + 1) \][/tex]
Therefore, the completely factored form of [tex]\( 16x^8 - 1 \)[/tex] is:
[tex]\[ (2x^2 - 1)(2x^2 + 1)(2x^2 - 2x + 1)(2x^2 + 2x + 1) \][/tex]
Answer:
B. (2x^2 - 1)(2x^2 + 1)(4x^4 + 1)
Step-by-step explanation:
Factor completely 16 x^8 - 1.
This is the difference of squares, a^2 - b^2 = (a-b) (a+b)
(4x^4)^2 - 1^2 where 4x^4 = a and 1 = b
16x^8 -1 = (4x^4 -1) (4x^4+1)
4x^4 -1 is also a difference of squares where a = 2x^2 and b=1
16x^8 -1 = (2x^2 -1)(2x^2+1) (4x^4+1)
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.