Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Let's analyze the transformation [tex]\( g(x) = 5 f(x) \)[/tex] step-by-step to understand its effects on the original function [tex]\( f(x) \)[/tex].
### 1. Understanding the Transformation
The transformation [tex]\( g(x) = 5 f(x) \)[/tex] can be described as a vertical stretch of the original function [tex]\( f(x) \)[/tex] by a factor of 5. This means that for any given value of [tex]\( x \)[/tex], the output of [tex]\( f(x) \)[/tex] is multiplied by 5 to get [tex]\( g(x) \)[/tex].
### 2. Effects on the Slope
If the original function [tex]\( f(x) \)[/tex] is linear and can be expressed in the form [tex]\( f(x) = mx + b \)[/tex]:
- The slope of [tex]\( f(x) \)[/tex] is [tex]\( m \)[/tex].
- For the transformed function [tex]\( g(x) = 5 f(x) \)[/tex], this becomes [tex]\( g(x) = 5(mx + b) = 5mx + 5b \)[/tex].
So, the new slope becomes [tex]\( 5m \)[/tex], which means the slope is increased by a factor of 5. It does not change signs.
### 3. Effects on the Domain
The domain of the function [tex]\( f(x) \)[/tex] refers to all the input values [tex]\( x \)[/tex] for which the function is defined. Since the transformation [tex]\( g(x) = 5 f(x) \)[/tex] only involves scaling the output by 5 and does not change how [tex]\( x \)[/tex] is processed, the domain of the function remains unaffected. Therefore, the domain does not change.
### 4. Effects on the [tex]\( x \)[/tex]-Intercept
The [tex]\( x \)[/tex]-intercept is the point where the function crosses the [tex]\( x \)[/tex]-axis. For the original function [tex]\( f(x) \)[/tex]:
- The [tex]\( x \)[/tex]-intercept occurs where [tex]\( f(x) = 0 \)[/tex].
For the transformed function [tex]\( g(x) = 5 f(x) \)[/tex], the [tex]\( x \)[/tex]-intercept occurs where [tex]\( 5 f(x) = 0 \)[/tex]. Since multiplying zero by 5 still gives zero, the [tex]\( x \)[/tex]-intercept remains unchanged. Therefore, the [tex]\( x \)[/tex]-intercept does not increase by a multiple of 5.
### 5. Effects on the [tex]\( y \)[/tex]-Intercept
The [tex]\( y \)[/tex]-intercept is the point where the function crosses the [tex]\( y \)[/tex]-axis, i.e., where [tex]\( x = 0 \)[/tex].
For the original function [tex]\( f(x) \)[/tex]:
- The [tex]\( y \)[/tex]-intercept is [tex]\( f(0) = b \)[/tex], where [tex]\( b \)[/tex] is the constant term.
For the transformed function [tex]\( g(x) = 5 f(x) \)[/tex]:
- The [tex]\( y \)[/tex]-intercept is [tex]\( g(0) = 5 f(0) = 5b \)[/tex].
Therefore, if the [tex]\( y \)[/tex]-intercept of [tex]\( f(x) \)[/tex] is non-zero, it increases by a factor of 5.
### Conclusion
Based on our analysis, the correct effect of the transformation [tex]\( g(x) = 5 f(x) \)[/tex] on the original function [tex]\( f(x) \)[/tex] is:
- The [tex]\( y \)[/tex]-intercept increased by a multiple of 5.
Hence, the answer is:
The [tex]\( y \)[/tex]-intercept increased by a multiple of 5.
### 1. Understanding the Transformation
The transformation [tex]\( g(x) = 5 f(x) \)[/tex] can be described as a vertical stretch of the original function [tex]\( f(x) \)[/tex] by a factor of 5. This means that for any given value of [tex]\( x \)[/tex], the output of [tex]\( f(x) \)[/tex] is multiplied by 5 to get [tex]\( g(x) \)[/tex].
### 2. Effects on the Slope
If the original function [tex]\( f(x) \)[/tex] is linear and can be expressed in the form [tex]\( f(x) = mx + b \)[/tex]:
- The slope of [tex]\( f(x) \)[/tex] is [tex]\( m \)[/tex].
- For the transformed function [tex]\( g(x) = 5 f(x) \)[/tex], this becomes [tex]\( g(x) = 5(mx + b) = 5mx + 5b \)[/tex].
So, the new slope becomes [tex]\( 5m \)[/tex], which means the slope is increased by a factor of 5. It does not change signs.
### 3. Effects on the Domain
The domain of the function [tex]\( f(x) \)[/tex] refers to all the input values [tex]\( x \)[/tex] for which the function is defined. Since the transformation [tex]\( g(x) = 5 f(x) \)[/tex] only involves scaling the output by 5 and does not change how [tex]\( x \)[/tex] is processed, the domain of the function remains unaffected. Therefore, the domain does not change.
### 4. Effects on the [tex]\( x \)[/tex]-Intercept
The [tex]\( x \)[/tex]-intercept is the point where the function crosses the [tex]\( x \)[/tex]-axis. For the original function [tex]\( f(x) \)[/tex]:
- The [tex]\( x \)[/tex]-intercept occurs where [tex]\( f(x) = 0 \)[/tex].
For the transformed function [tex]\( g(x) = 5 f(x) \)[/tex], the [tex]\( x \)[/tex]-intercept occurs where [tex]\( 5 f(x) = 0 \)[/tex]. Since multiplying zero by 5 still gives zero, the [tex]\( x \)[/tex]-intercept remains unchanged. Therefore, the [tex]\( x \)[/tex]-intercept does not increase by a multiple of 5.
### 5. Effects on the [tex]\( y \)[/tex]-Intercept
The [tex]\( y \)[/tex]-intercept is the point where the function crosses the [tex]\( y \)[/tex]-axis, i.e., where [tex]\( x = 0 \)[/tex].
For the original function [tex]\( f(x) \)[/tex]:
- The [tex]\( y \)[/tex]-intercept is [tex]\( f(0) = b \)[/tex], where [tex]\( b \)[/tex] is the constant term.
For the transformed function [tex]\( g(x) = 5 f(x) \)[/tex]:
- The [tex]\( y \)[/tex]-intercept is [tex]\( g(0) = 5 f(0) = 5b \)[/tex].
Therefore, if the [tex]\( y \)[/tex]-intercept of [tex]\( f(x) \)[/tex] is non-zero, it increases by a factor of 5.
### Conclusion
Based on our analysis, the correct effect of the transformation [tex]\( g(x) = 5 f(x) \)[/tex] on the original function [tex]\( f(x) \)[/tex] is:
- The [tex]\( y \)[/tex]-intercept increased by a multiple of 5.
Hence, the answer is:
The [tex]\( y \)[/tex]-intercept increased by a multiple of 5.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.