Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To address the problem of determining the graph of the function [tex]\( g(x) = \frac{1}{4} f(x) \)[/tex] given that [tex]\( f(x) = x^2 \)[/tex], let's work through the steps methodically.
### Step-by-Step Solution
1. Understanding [tex]\( f(x) = x^2 \)[/tex]:
- [tex]\( f(x) = x^2 \)[/tex] is a parabolic function that opens upwards with its vertex at the origin (0,0).
- For various values of [tex]\( x \)[/tex], the function [tex]\( f(x) = x^2 \)[/tex] will have the following values:
- [tex]\( f(-2) = (-2)^2 = 4 \)[/tex]
- [tex]\( f(-1) = (-1)^2 = 1 \)[/tex]
- [tex]\( f(0) = 0^2 = 0 \)[/tex]
- [tex]\( f(1) = 1^2 = 1 \)[/tex]
- [tex]\( f(2) = 2^2 = 4 \)[/tex]
- So, the points on the graph of [tex]\( f(x) \)[/tex] are:
[tex]\[ (-2, 4), (-1, 1), (0, 0), (1, 1), (2, 4) \][/tex]
2. Now considering [tex]\( g(x) = \frac{1}{4} f(x) \)[/tex]:
- [tex]\( g(x) = \frac{1}{4} f(x) = \frac{1}{4} x^2 \)[/tex] means that each value of [tex]\( f(x) \)[/tex] is scaled by a factor of [tex]\( \frac{1}{4} \)[/tex].
- For the same values of [tex]\( x \)[/tex], we calculate [tex]\( g(x) \)[/tex]:
- [tex]\( g(-2) = \frac{1}{4} \cdot 4 = 1 \)[/tex]
- [tex]\( g(-1) = \frac{1}{4} \cdot 1 = 0.25 \)[/tex]
- [tex]\( g(0) = \frac{1}{4} \cdot 0 = 0 \)[/tex]
- [tex]\( g(1) = \frac{1}{4} \cdot 1 = 0.25 \)[/tex]
- [tex]\( g(2) = \frac{1}{4} \cdot 4 = 1 \)[/tex]
- So, the points on the graph of [tex]\( g(x) \)[/tex] are:
[tex]\[ (-2, 1), (-1, 0.25), (0, 0), (1, 0.25), (2, 1) \][/tex]
3. Interpreting the graph:
- The graph of [tex]\( g(x) \)[/tex] will also be a parabola opening upwards, but it will be wider compared to the graph of [tex]\( f(x) \)[/tex].
- The vertical stretch factor [tex]\( \frac{1}{4} \)[/tex] effectively compresses the parabola vertically.
4. Conclusion:
- The graph of [tex]\( g(x) = \frac{1}{4} x^2 \)[/tex] is a wider parabola than [tex]\( f(x) = x^2 \)[/tex], with key points at [tex]\( (-2, 1), (-1, 0.25), (0, 0), (1, 0.25), (2, 1) \)[/tex].
Therefore, the graph of [tex]\( g(x) \)[/tex] is a vertically compressed version of the graph of [tex]\( f(x) \)[/tex].
### Step-by-Step Solution
1. Understanding [tex]\( f(x) = x^2 \)[/tex]:
- [tex]\( f(x) = x^2 \)[/tex] is a parabolic function that opens upwards with its vertex at the origin (0,0).
- For various values of [tex]\( x \)[/tex], the function [tex]\( f(x) = x^2 \)[/tex] will have the following values:
- [tex]\( f(-2) = (-2)^2 = 4 \)[/tex]
- [tex]\( f(-1) = (-1)^2 = 1 \)[/tex]
- [tex]\( f(0) = 0^2 = 0 \)[/tex]
- [tex]\( f(1) = 1^2 = 1 \)[/tex]
- [tex]\( f(2) = 2^2 = 4 \)[/tex]
- So, the points on the graph of [tex]\( f(x) \)[/tex] are:
[tex]\[ (-2, 4), (-1, 1), (0, 0), (1, 1), (2, 4) \][/tex]
2. Now considering [tex]\( g(x) = \frac{1}{4} f(x) \)[/tex]:
- [tex]\( g(x) = \frac{1}{4} f(x) = \frac{1}{4} x^2 \)[/tex] means that each value of [tex]\( f(x) \)[/tex] is scaled by a factor of [tex]\( \frac{1}{4} \)[/tex].
- For the same values of [tex]\( x \)[/tex], we calculate [tex]\( g(x) \)[/tex]:
- [tex]\( g(-2) = \frac{1}{4} \cdot 4 = 1 \)[/tex]
- [tex]\( g(-1) = \frac{1}{4} \cdot 1 = 0.25 \)[/tex]
- [tex]\( g(0) = \frac{1}{4} \cdot 0 = 0 \)[/tex]
- [tex]\( g(1) = \frac{1}{4} \cdot 1 = 0.25 \)[/tex]
- [tex]\( g(2) = \frac{1}{4} \cdot 4 = 1 \)[/tex]
- So, the points on the graph of [tex]\( g(x) \)[/tex] are:
[tex]\[ (-2, 1), (-1, 0.25), (0, 0), (1, 0.25), (2, 1) \][/tex]
3. Interpreting the graph:
- The graph of [tex]\( g(x) \)[/tex] will also be a parabola opening upwards, but it will be wider compared to the graph of [tex]\( f(x) \)[/tex].
- The vertical stretch factor [tex]\( \frac{1}{4} \)[/tex] effectively compresses the parabola vertically.
4. Conclusion:
- The graph of [tex]\( g(x) = \frac{1}{4} x^2 \)[/tex] is a wider parabola than [tex]\( f(x) = x^2 \)[/tex], with key points at [tex]\( (-2, 1), (-1, 0.25), (0, 0), (1, 0.25), (2, 1) \)[/tex].
Therefore, the graph of [tex]\( g(x) \)[/tex] is a vertically compressed version of the graph of [tex]\( f(x) \)[/tex].
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.