Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
We are given the function [tex]\( k(x) = -2^x \)[/tex], and we need to determine its domain and range.
### Domain
1. Understand the exponential function: The base function [tex]\( 2^x \)[/tex] is an exponential function. Exponential functions are defined for all real numbers [tex]\( x \)[/tex].
2. Transformation impact on domain: Multiplying by [tex]\(-1\)[/tex] does not restrict the domain of the function. Therefore, the function [tex]\( k(x) = -2^x \)[/tex] is also defined for all real numbers [tex]\( x \)[/tex].
So, the domain of [tex]\( k(x) \)[/tex] is:
[tex]\[ \{ x \in \mathbb{R} \mid -\infty < x < \infty \} \][/tex]
### Range
1. Analyze the range of the parent function: The original function [tex]\( 2^x \)[/tex] has a range of [tex]\( \{ y \in \mathbb{R} \mid y > 0 \} \)[/tex], since [tex]\( 2^x \)[/tex] is always positive for all real [tex]\( x \)[/tex].
2. Impact of the negative sign: The transformation involves multiplying the parent function by [tex]\(-1\)[/tex]. This transforms all positive output values to negative ones.
Therefore, the range of [tex]\( k(x) \)[/tex] will be:
[tex]\[ \{ y \in \mathbb{R} \mid y < 0 \} \][/tex]
However, considering that exponential functions approach zero but never actually reach zero, we need to revisit the impact thoroughly.
[tex]\[ 2^x = 0 \implies x = -\infty \][/tex]
Even as [tex]\( x \to -\infty \)[/tex], [tex]\( 2^x \to 0 \)[/tex], but will never be zero. Therefore, [tex]\( -2^x \to 0 \)[/tex] will not include zero strictly but will approach it from the negative side.
Final conclusion:
The correct range for [tex]\( k(x) \)[/tex] is:
[tex]\[ \{ y \in \mathbb{R} \mid y \leq 0 \} \][/tex]
Therefore, the correct choices are:
- Domain: [tex]\(\{ x \in \mathbb{R} \mid -\infty < x < \infty \} \)[/tex]
- Range: [tex]\(\{ y \in \mathbb{R} \mid y \leq 0 \} \)[/tex]
Thus, the correct answer is:
[tex]\[ \text{Domain: } \{ x \in \mathbb{R} \mid -\infty < x < \infty \}, \text{ Range: } \{ y \in \mathbb{R} \mid y \leq 0 \} \][/tex]
### Domain
1. Understand the exponential function: The base function [tex]\( 2^x \)[/tex] is an exponential function. Exponential functions are defined for all real numbers [tex]\( x \)[/tex].
2. Transformation impact on domain: Multiplying by [tex]\(-1\)[/tex] does not restrict the domain of the function. Therefore, the function [tex]\( k(x) = -2^x \)[/tex] is also defined for all real numbers [tex]\( x \)[/tex].
So, the domain of [tex]\( k(x) \)[/tex] is:
[tex]\[ \{ x \in \mathbb{R} \mid -\infty < x < \infty \} \][/tex]
### Range
1. Analyze the range of the parent function: The original function [tex]\( 2^x \)[/tex] has a range of [tex]\( \{ y \in \mathbb{R} \mid y > 0 \} \)[/tex], since [tex]\( 2^x \)[/tex] is always positive for all real [tex]\( x \)[/tex].
2. Impact of the negative sign: The transformation involves multiplying the parent function by [tex]\(-1\)[/tex]. This transforms all positive output values to negative ones.
Therefore, the range of [tex]\( k(x) \)[/tex] will be:
[tex]\[ \{ y \in \mathbb{R} \mid y < 0 \} \][/tex]
However, considering that exponential functions approach zero but never actually reach zero, we need to revisit the impact thoroughly.
[tex]\[ 2^x = 0 \implies x = -\infty \][/tex]
Even as [tex]\( x \to -\infty \)[/tex], [tex]\( 2^x \to 0 \)[/tex], but will never be zero. Therefore, [tex]\( -2^x \to 0 \)[/tex] will not include zero strictly but will approach it from the negative side.
Final conclusion:
The correct range for [tex]\( k(x) \)[/tex] is:
[tex]\[ \{ y \in \mathbb{R} \mid y \leq 0 \} \][/tex]
Therefore, the correct choices are:
- Domain: [tex]\(\{ x \in \mathbb{R} \mid -\infty < x < \infty \} \)[/tex]
- Range: [tex]\(\{ y \in \mathbb{R} \mid y \leq 0 \} \)[/tex]
Thus, the correct answer is:
[tex]\[ \text{Domain: } \{ x \in \mathbb{R} \mid -\infty < x < \infty \}, \text{ Range: } \{ y \in \mathbb{R} \mid y \leq 0 \} \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.