Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine the radius of the circle given by the equation [tex]\( x^2 + y^2 + 8x - 6y + 21 = 0 \)[/tex], let's rewrite the equation in the standard form [tex]\( (x-h)^2 + (y-k)^2 = r^2 \)[/tex]. This involves completing the square for the [tex]\( x \)[/tex] and [tex]\( y \)[/tex] terms. Here are the detailed steps:
1. Complete the square for the [tex]\( x \)[/tex] terms:
The terms involving [tex]\( x \)[/tex] are [tex]\( x^2 + 8x \)[/tex].
- Take the coefficient of [tex]\( x \)[/tex], which is 8. Divide it by 2 to get 4, then square 4 to get 16.
- Add and subtract 16 to/from the [tex]\( x \)[/tex] terms:
[tex]\[ x^2 + 8x = (x + 4)^2 - 16 \][/tex]
2. Complete the square for the [tex]\( y \)[/tex] terms:
The terms involving [tex]\( y \)[/tex] are [tex]\( y^2 - 6y \)[/tex].
- Take the coefficient of [tex]\( y \)[/tex], which is -6. Divide it by 2 to get -3, then square -3 to get 9.
- Add and subtract 9 to/from the [tex]\( y \)[/tex] terms:
[tex]\[ y^2 - 6y = (y - 3)^2 - 9 \][/tex]
3. Rewrite the original equation with the completed squares:
Substitute the completed square forms back into the equation:
[tex]\[ (x + 4)^2 - 16 + (y - 3)^2 - 9 + 21 = 0 \][/tex]
4. Simplify the equation:
Combine the constants:
[tex]\[ (x + 4)^2 - 16 + (y - 3)^2 - 9 + 21 = (x + 4)^2 + (y - 3)^2 - 4 = 0 \][/tex]
5. Rearrange into the standard form of a circle:
[tex]\[ (x + 4)^2 + (y - 3)^2 = 4 \][/tex]
6. Identify the radius:
From the standard form [tex]\( (x - h)^2 + (y - k)^2 = r^2 \)[/tex], we can see that [tex]\( r^2 = 4 \)[/tex]. Thus, [tex]\( r = \sqrt{4} = 2 \)[/tex].
Therefore, the radius of the circle is 2 units.
1. Complete the square for the [tex]\( x \)[/tex] terms:
The terms involving [tex]\( x \)[/tex] are [tex]\( x^2 + 8x \)[/tex].
- Take the coefficient of [tex]\( x \)[/tex], which is 8. Divide it by 2 to get 4, then square 4 to get 16.
- Add and subtract 16 to/from the [tex]\( x \)[/tex] terms:
[tex]\[ x^2 + 8x = (x + 4)^2 - 16 \][/tex]
2. Complete the square for the [tex]\( y \)[/tex] terms:
The terms involving [tex]\( y \)[/tex] are [tex]\( y^2 - 6y \)[/tex].
- Take the coefficient of [tex]\( y \)[/tex], which is -6. Divide it by 2 to get -3, then square -3 to get 9.
- Add and subtract 9 to/from the [tex]\( y \)[/tex] terms:
[tex]\[ y^2 - 6y = (y - 3)^2 - 9 \][/tex]
3. Rewrite the original equation with the completed squares:
Substitute the completed square forms back into the equation:
[tex]\[ (x + 4)^2 - 16 + (y - 3)^2 - 9 + 21 = 0 \][/tex]
4. Simplify the equation:
Combine the constants:
[tex]\[ (x + 4)^2 - 16 + (y - 3)^2 - 9 + 21 = (x + 4)^2 + (y - 3)^2 - 4 = 0 \][/tex]
5. Rearrange into the standard form of a circle:
[tex]\[ (x + 4)^2 + (y - 3)^2 = 4 \][/tex]
6. Identify the radius:
From the standard form [tex]\( (x - h)^2 + (y - k)^2 = r^2 \)[/tex], we can see that [tex]\( r^2 = 4 \)[/tex]. Thus, [tex]\( r = \sqrt{4} = 2 \)[/tex].
Therefore, the radius of the circle is 2 units.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.