Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To verify that [tex]\((AB)^{-1} = B^{-1}A^{-1}\)[/tex] for the given matrices [tex]\(A\)[/tex] and [tex]\(B\)[/tex], we will take the following steps:
1. Define the matrices [tex]\(A\)[/tex] and [tex]\(B\)[/tex]:
[tex]\[ A = \begin{pmatrix} 3 & 2 \\ 7 & 5 \end{pmatrix} \][/tex]
[tex]\[ B = \begin{pmatrix} -2 & 7 \\ -3 & 9 \end{pmatrix} \][/tex]
2. Find the inverse of matrix [tex]\(A\)[/tex]:
Recall that for a 2x2 matrix [tex]\( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \)[/tex], the inverse is given by:
[tex]\[ A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \][/tex]
For matrix [tex]\(A\)[/tex]:
[tex]\[ A = \begin{pmatrix} 3 & 2 \\ 7 & 5 \end{pmatrix} \][/tex]
The determinant of [tex]\(A\)[/tex] is:
[tex]\[ \text{det}(A) = 3 \cdot 5 - 2 \cdot 7 = 15 - 14 = 1 \][/tex]
Hence, the inverse of [tex]\(A\)[/tex] is:
[tex]\[ A^{-1} = \begin{pmatrix} 5 & -2 \\ -7 & 3 \end{pmatrix} \][/tex]
3. Find the inverse of matrix [tex]\(B\)[/tex]:
Similarly, for matrix [tex]\(B\)[/tex]:
[tex]\[ B = \begin{pmatrix} -2 & 7 \\ -3 & 9 \end{pmatrix} \][/tex]
The determinant of [tex]\(B\)[/tex] is:
[tex]\[ \text{det}(B) = (-2) \cdot 9 - 7 \cdot (-3) = -18 + 21 = 3 \][/tex]
Hence, the inverse of [tex]\(B\)[/tex] is:
[tex]\[ B^{-1} = \frac{1}{3} \begin{pmatrix} 9 & -7 \\ 3 & -2 \end{pmatrix} = \begin{pmatrix} 3 & -2.33333333 \\ 1 & -0.66666667 \end{pmatrix} \][/tex]
4. Calculate the product [tex]\(AB\)[/tex]:
[tex]\[ AB = \begin{pmatrix} 3 & 2 \\ 7 & 5 \end{pmatrix} \begin{pmatrix} -2 & 7 \\ -3 & 9 \end{pmatrix} \][/tex]
Compute each element of the resulting matrix:
[tex]\[ AB = \begin{pmatrix} 3 \cdot (-2) + 2 \cdot (-3) & 3 \cdot 7 + 2 \cdot 9 \\ 7 \cdot (-2) + 5 \cdot (-3) & 7 \cdot 7 + 5 \cdot 9 \end{pmatrix} = \begin{pmatrix} -6 - 6 & 21 + 18 \\ -14 - 15 & 49 + 45 \end{pmatrix} = \begin{pmatrix} -12 & 39 \\ -29 & 94 \end{pmatrix} \][/tex]
5. Find the inverse of matrix [tex]\(AB\)[/tex]:
The determinant of [tex]\(AB\)[/tex] is:
[tex]\[ \text{det}(AB) = (-12) \cdot 94 - 39 \cdot (-29) = -1128 + 1131 = 3 \][/tex]
Hence, the inverse of [tex]\(AB\)[/tex] is:
[tex]\[ (AB)^{-1} = \frac{1}{3} \begin{pmatrix} 94 & -39 \\ 29 & -12 \end{pmatrix} = \begin{pmatrix} 31.33333333 & -13 \\ 9.66666667 & -4 \end{pmatrix} \][/tex]
6. Compute the product [tex]\(B^{-1}A^{-1}\)[/tex]:
[tex]\[ B^{-1}A^{-1} = \begin{pmatrix} 3 & -2.33333333 \\ 1 & -0.66666667 \end{pmatrix} \begin{pmatrix} 5 & -2 \\ -7 & 3 \end{pmatrix} \][/tex]
Compute each element of the resulting matrix:
[tex]\[ B^{-1}A^{-1} = \begin{pmatrix} 3 \cdot 5 + (-2.33333333) \cdot (-7) & 3 \cdot (-2) + (-2.33333333) \cdot 3 \\ 1 \cdot 5 + (-0.66666667) \cdot (-7) & 1 \cdot (-2) + (-0.66666667) \cdot 3 \end{pmatrix} \][/tex]
[tex]\[ B^{-1}A^{-1} = \begin{pmatrix} 15 + 16.33333331 & -6 - 7 \\ 5 + 4.66666669 & -2 - 2 \end{pmatrix} \][/tex]
[tex]\[ B^{-1}A^{-1} = \begin{pmatrix} 31.33333333 & -13 \\ 9.66666667 & -4 \end{pmatrix} \][/tex]
7. Conclusion:
We observe that:
[tex]\[ (AB)^{-1} = B^{-1}A^{-1} = \begin{pmatrix} 31.33333333 & -13 \\ 9.66666667 & -4 \end{pmatrix} \][/tex]
This verifies that the relation [tex]\((AB)^{-1} = B^{-1}A^{-1}\)[/tex] holds true for the given matrices [tex]\(A\)[/tex] and [tex]\(B\)[/tex].
1. Define the matrices [tex]\(A\)[/tex] and [tex]\(B\)[/tex]:
[tex]\[ A = \begin{pmatrix} 3 & 2 \\ 7 & 5 \end{pmatrix} \][/tex]
[tex]\[ B = \begin{pmatrix} -2 & 7 \\ -3 & 9 \end{pmatrix} \][/tex]
2. Find the inverse of matrix [tex]\(A\)[/tex]:
Recall that for a 2x2 matrix [tex]\( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \)[/tex], the inverse is given by:
[tex]\[ A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \][/tex]
For matrix [tex]\(A\)[/tex]:
[tex]\[ A = \begin{pmatrix} 3 & 2 \\ 7 & 5 \end{pmatrix} \][/tex]
The determinant of [tex]\(A\)[/tex] is:
[tex]\[ \text{det}(A) = 3 \cdot 5 - 2 \cdot 7 = 15 - 14 = 1 \][/tex]
Hence, the inverse of [tex]\(A\)[/tex] is:
[tex]\[ A^{-1} = \begin{pmatrix} 5 & -2 \\ -7 & 3 \end{pmatrix} \][/tex]
3. Find the inverse of matrix [tex]\(B\)[/tex]:
Similarly, for matrix [tex]\(B\)[/tex]:
[tex]\[ B = \begin{pmatrix} -2 & 7 \\ -3 & 9 \end{pmatrix} \][/tex]
The determinant of [tex]\(B\)[/tex] is:
[tex]\[ \text{det}(B) = (-2) \cdot 9 - 7 \cdot (-3) = -18 + 21 = 3 \][/tex]
Hence, the inverse of [tex]\(B\)[/tex] is:
[tex]\[ B^{-1} = \frac{1}{3} \begin{pmatrix} 9 & -7 \\ 3 & -2 \end{pmatrix} = \begin{pmatrix} 3 & -2.33333333 \\ 1 & -0.66666667 \end{pmatrix} \][/tex]
4. Calculate the product [tex]\(AB\)[/tex]:
[tex]\[ AB = \begin{pmatrix} 3 & 2 \\ 7 & 5 \end{pmatrix} \begin{pmatrix} -2 & 7 \\ -3 & 9 \end{pmatrix} \][/tex]
Compute each element of the resulting matrix:
[tex]\[ AB = \begin{pmatrix} 3 \cdot (-2) + 2 \cdot (-3) & 3 \cdot 7 + 2 \cdot 9 \\ 7 \cdot (-2) + 5 \cdot (-3) & 7 \cdot 7 + 5 \cdot 9 \end{pmatrix} = \begin{pmatrix} -6 - 6 & 21 + 18 \\ -14 - 15 & 49 + 45 \end{pmatrix} = \begin{pmatrix} -12 & 39 \\ -29 & 94 \end{pmatrix} \][/tex]
5. Find the inverse of matrix [tex]\(AB\)[/tex]:
The determinant of [tex]\(AB\)[/tex] is:
[tex]\[ \text{det}(AB) = (-12) \cdot 94 - 39 \cdot (-29) = -1128 + 1131 = 3 \][/tex]
Hence, the inverse of [tex]\(AB\)[/tex] is:
[tex]\[ (AB)^{-1} = \frac{1}{3} \begin{pmatrix} 94 & -39 \\ 29 & -12 \end{pmatrix} = \begin{pmatrix} 31.33333333 & -13 \\ 9.66666667 & -4 \end{pmatrix} \][/tex]
6. Compute the product [tex]\(B^{-1}A^{-1}\)[/tex]:
[tex]\[ B^{-1}A^{-1} = \begin{pmatrix} 3 & -2.33333333 \\ 1 & -0.66666667 \end{pmatrix} \begin{pmatrix} 5 & -2 \\ -7 & 3 \end{pmatrix} \][/tex]
Compute each element of the resulting matrix:
[tex]\[ B^{-1}A^{-1} = \begin{pmatrix} 3 \cdot 5 + (-2.33333333) \cdot (-7) & 3 \cdot (-2) + (-2.33333333) \cdot 3 \\ 1 \cdot 5 + (-0.66666667) \cdot (-7) & 1 \cdot (-2) + (-0.66666667) \cdot 3 \end{pmatrix} \][/tex]
[tex]\[ B^{-1}A^{-1} = \begin{pmatrix} 15 + 16.33333331 & -6 - 7 \\ 5 + 4.66666669 & -2 - 2 \end{pmatrix} \][/tex]
[tex]\[ B^{-1}A^{-1} = \begin{pmatrix} 31.33333333 & -13 \\ 9.66666667 & -4 \end{pmatrix} \][/tex]
7. Conclusion:
We observe that:
[tex]\[ (AB)^{-1} = B^{-1}A^{-1} = \begin{pmatrix} 31.33333333 & -13 \\ 9.66666667 & -4 \end{pmatrix} \][/tex]
This verifies that the relation [tex]\((AB)^{-1} = B^{-1}A^{-1}\)[/tex] holds true for the given matrices [tex]\(A\)[/tex] and [tex]\(B\)[/tex].
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.