Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To verify that [tex]\((AB)^{-1} = B^{-1}A^{-1}\)[/tex] for the given matrices [tex]\(A\)[/tex] and [tex]\(B\)[/tex], we will take the following steps:
1. Define the matrices [tex]\(A\)[/tex] and [tex]\(B\)[/tex]:
[tex]\[ A = \begin{pmatrix} 3 & 2 \\ 7 & 5 \end{pmatrix} \][/tex]
[tex]\[ B = \begin{pmatrix} -2 & 7 \\ -3 & 9 \end{pmatrix} \][/tex]
2. Find the inverse of matrix [tex]\(A\)[/tex]:
Recall that for a 2x2 matrix [tex]\( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \)[/tex], the inverse is given by:
[tex]\[ A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \][/tex]
For matrix [tex]\(A\)[/tex]:
[tex]\[ A = \begin{pmatrix} 3 & 2 \\ 7 & 5 \end{pmatrix} \][/tex]
The determinant of [tex]\(A\)[/tex] is:
[tex]\[ \text{det}(A) = 3 \cdot 5 - 2 \cdot 7 = 15 - 14 = 1 \][/tex]
Hence, the inverse of [tex]\(A\)[/tex] is:
[tex]\[ A^{-1} = \begin{pmatrix} 5 & -2 \\ -7 & 3 \end{pmatrix} \][/tex]
3. Find the inverse of matrix [tex]\(B\)[/tex]:
Similarly, for matrix [tex]\(B\)[/tex]:
[tex]\[ B = \begin{pmatrix} -2 & 7 \\ -3 & 9 \end{pmatrix} \][/tex]
The determinant of [tex]\(B\)[/tex] is:
[tex]\[ \text{det}(B) = (-2) \cdot 9 - 7 \cdot (-3) = -18 + 21 = 3 \][/tex]
Hence, the inverse of [tex]\(B\)[/tex] is:
[tex]\[ B^{-1} = \frac{1}{3} \begin{pmatrix} 9 & -7 \\ 3 & -2 \end{pmatrix} = \begin{pmatrix} 3 & -2.33333333 \\ 1 & -0.66666667 \end{pmatrix} \][/tex]
4. Calculate the product [tex]\(AB\)[/tex]:
[tex]\[ AB = \begin{pmatrix} 3 & 2 \\ 7 & 5 \end{pmatrix} \begin{pmatrix} -2 & 7 \\ -3 & 9 \end{pmatrix} \][/tex]
Compute each element of the resulting matrix:
[tex]\[ AB = \begin{pmatrix} 3 \cdot (-2) + 2 \cdot (-3) & 3 \cdot 7 + 2 \cdot 9 \\ 7 \cdot (-2) + 5 \cdot (-3) & 7 \cdot 7 + 5 \cdot 9 \end{pmatrix} = \begin{pmatrix} -6 - 6 & 21 + 18 \\ -14 - 15 & 49 + 45 \end{pmatrix} = \begin{pmatrix} -12 & 39 \\ -29 & 94 \end{pmatrix} \][/tex]
5. Find the inverse of matrix [tex]\(AB\)[/tex]:
The determinant of [tex]\(AB\)[/tex] is:
[tex]\[ \text{det}(AB) = (-12) \cdot 94 - 39 \cdot (-29) = -1128 + 1131 = 3 \][/tex]
Hence, the inverse of [tex]\(AB\)[/tex] is:
[tex]\[ (AB)^{-1} = \frac{1}{3} \begin{pmatrix} 94 & -39 \\ 29 & -12 \end{pmatrix} = \begin{pmatrix} 31.33333333 & -13 \\ 9.66666667 & -4 \end{pmatrix} \][/tex]
6. Compute the product [tex]\(B^{-1}A^{-1}\)[/tex]:
[tex]\[ B^{-1}A^{-1} = \begin{pmatrix} 3 & -2.33333333 \\ 1 & -0.66666667 \end{pmatrix} \begin{pmatrix} 5 & -2 \\ -7 & 3 \end{pmatrix} \][/tex]
Compute each element of the resulting matrix:
[tex]\[ B^{-1}A^{-1} = \begin{pmatrix} 3 \cdot 5 + (-2.33333333) \cdot (-7) & 3 \cdot (-2) + (-2.33333333) \cdot 3 \\ 1 \cdot 5 + (-0.66666667) \cdot (-7) & 1 \cdot (-2) + (-0.66666667) \cdot 3 \end{pmatrix} \][/tex]
[tex]\[ B^{-1}A^{-1} = \begin{pmatrix} 15 + 16.33333331 & -6 - 7 \\ 5 + 4.66666669 & -2 - 2 \end{pmatrix} \][/tex]
[tex]\[ B^{-1}A^{-1} = \begin{pmatrix} 31.33333333 & -13 \\ 9.66666667 & -4 \end{pmatrix} \][/tex]
7. Conclusion:
We observe that:
[tex]\[ (AB)^{-1} = B^{-1}A^{-1} = \begin{pmatrix} 31.33333333 & -13 \\ 9.66666667 & -4 \end{pmatrix} \][/tex]
This verifies that the relation [tex]\((AB)^{-1} = B^{-1}A^{-1}\)[/tex] holds true for the given matrices [tex]\(A\)[/tex] and [tex]\(B\)[/tex].
1. Define the matrices [tex]\(A\)[/tex] and [tex]\(B\)[/tex]:
[tex]\[ A = \begin{pmatrix} 3 & 2 \\ 7 & 5 \end{pmatrix} \][/tex]
[tex]\[ B = \begin{pmatrix} -2 & 7 \\ -3 & 9 \end{pmatrix} \][/tex]
2. Find the inverse of matrix [tex]\(A\)[/tex]:
Recall that for a 2x2 matrix [tex]\( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \)[/tex], the inverse is given by:
[tex]\[ A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \][/tex]
For matrix [tex]\(A\)[/tex]:
[tex]\[ A = \begin{pmatrix} 3 & 2 \\ 7 & 5 \end{pmatrix} \][/tex]
The determinant of [tex]\(A\)[/tex] is:
[tex]\[ \text{det}(A) = 3 \cdot 5 - 2 \cdot 7 = 15 - 14 = 1 \][/tex]
Hence, the inverse of [tex]\(A\)[/tex] is:
[tex]\[ A^{-1} = \begin{pmatrix} 5 & -2 \\ -7 & 3 \end{pmatrix} \][/tex]
3. Find the inverse of matrix [tex]\(B\)[/tex]:
Similarly, for matrix [tex]\(B\)[/tex]:
[tex]\[ B = \begin{pmatrix} -2 & 7 \\ -3 & 9 \end{pmatrix} \][/tex]
The determinant of [tex]\(B\)[/tex] is:
[tex]\[ \text{det}(B) = (-2) \cdot 9 - 7 \cdot (-3) = -18 + 21 = 3 \][/tex]
Hence, the inverse of [tex]\(B\)[/tex] is:
[tex]\[ B^{-1} = \frac{1}{3} \begin{pmatrix} 9 & -7 \\ 3 & -2 \end{pmatrix} = \begin{pmatrix} 3 & -2.33333333 \\ 1 & -0.66666667 \end{pmatrix} \][/tex]
4. Calculate the product [tex]\(AB\)[/tex]:
[tex]\[ AB = \begin{pmatrix} 3 & 2 \\ 7 & 5 \end{pmatrix} \begin{pmatrix} -2 & 7 \\ -3 & 9 \end{pmatrix} \][/tex]
Compute each element of the resulting matrix:
[tex]\[ AB = \begin{pmatrix} 3 \cdot (-2) + 2 \cdot (-3) & 3 \cdot 7 + 2 \cdot 9 \\ 7 \cdot (-2) + 5 \cdot (-3) & 7 \cdot 7 + 5 \cdot 9 \end{pmatrix} = \begin{pmatrix} -6 - 6 & 21 + 18 \\ -14 - 15 & 49 + 45 \end{pmatrix} = \begin{pmatrix} -12 & 39 \\ -29 & 94 \end{pmatrix} \][/tex]
5. Find the inverse of matrix [tex]\(AB\)[/tex]:
The determinant of [tex]\(AB\)[/tex] is:
[tex]\[ \text{det}(AB) = (-12) \cdot 94 - 39 \cdot (-29) = -1128 + 1131 = 3 \][/tex]
Hence, the inverse of [tex]\(AB\)[/tex] is:
[tex]\[ (AB)^{-1} = \frac{1}{3} \begin{pmatrix} 94 & -39 \\ 29 & -12 \end{pmatrix} = \begin{pmatrix} 31.33333333 & -13 \\ 9.66666667 & -4 \end{pmatrix} \][/tex]
6. Compute the product [tex]\(B^{-1}A^{-1}\)[/tex]:
[tex]\[ B^{-1}A^{-1} = \begin{pmatrix} 3 & -2.33333333 \\ 1 & -0.66666667 \end{pmatrix} \begin{pmatrix} 5 & -2 \\ -7 & 3 \end{pmatrix} \][/tex]
Compute each element of the resulting matrix:
[tex]\[ B^{-1}A^{-1} = \begin{pmatrix} 3 \cdot 5 + (-2.33333333) \cdot (-7) & 3 \cdot (-2) + (-2.33333333) \cdot 3 \\ 1 \cdot 5 + (-0.66666667) \cdot (-7) & 1 \cdot (-2) + (-0.66666667) \cdot 3 \end{pmatrix} \][/tex]
[tex]\[ B^{-1}A^{-1} = \begin{pmatrix} 15 + 16.33333331 & -6 - 7 \\ 5 + 4.66666669 & -2 - 2 \end{pmatrix} \][/tex]
[tex]\[ B^{-1}A^{-1} = \begin{pmatrix} 31.33333333 & -13 \\ 9.66666667 & -4 \end{pmatrix} \][/tex]
7. Conclusion:
We observe that:
[tex]\[ (AB)^{-1} = B^{-1}A^{-1} = \begin{pmatrix} 31.33333333 & -13 \\ 9.66666667 & -4 \end{pmatrix} \][/tex]
This verifies that the relation [tex]\((AB)^{-1} = B^{-1}A^{-1}\)[/tex] holds true for the given matrices [tex]\(A\)[/tex] and [tex]\(B\)[/tex].
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.