Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To verify that [tex]\((AB)^{-1} = B^{-1}A^{-1}\)[/tex] for the given matrices [tex]\(A\)[/tex] and [tex]\(B\)[/tex], we will take the following steps:
1. Define the matrices [tex]\(A\)[/tex] and [tex]\(B\)[/tex]:
[tex]\[ A = \begin{pmatrix} 3 & 2 \\ 7 & 5 \end{pmatrix} \][/tex]
[tex]\[ B = \begin{pmatrix} -2 & 7 \\ -3 & 9 \end{pmatrix} \][/tex]
2. Find the inverse of matrix [tex]\(A\)[/tex]:
Recall that for a 2x2 matrix [tex]\( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \)[/tex], the inverse is given by:
[tex]\[ A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \][/tex]
For matrix [tex]\(A\)[/tex]:
[tex]\[ A = \begin{pmatrix} 3 & 2 \\ 7 & 5 \end{pmatrix} \][/tex]
The determinant of [tex]\(A\)[/tex] is:
[tex]\[ \text{det}(A) = 3 \cdot 5 - 2 \cdot 7 = 15 - 14 = 1 \][/tex]
Hence, the inverse of [tex]\(A\)[/tex] is:
[tex]\[ A^{-1} = \begin{pmatrix} 5 & -2 \\ -7 & 3 \end{pmatrix} \][/tex]
3. Find the inverse of matrix [tex]\(B\)[/tex]:
Similarly, for matrix [tex]\(B\)[/tex]:
[tex]\[ B = \begin{pmatrix} -2 & 7 \\ -3 & 9 \end{pmatrix} \][/tex]
The determinant of [tex]\(B\)[/tex] is:
[tex]\[ \text{det}(B) = (-2) \cdot 9 - 7 \cdot (-3) = -18 + 21 = 3 \][/tex]
Hence, the inverse of [tex]\(B\)[/tex] is:
[tex]\[ B^{-1} = \frac{1}{3} \begin{pmatrix} 9 & -7 \\ 3 & -2 \end{pmatrix} = \begin{pmatrix} 3 & -2.33333333 \\ 1 & -0.66666667 \end{pmatrix} \][/tex]
4. Calculate the product [tex]\(AB\)[/tex]:
[tex]\[ AB = \begin{pmatrix} 3 & 2 \\ 7 & 5 \end{pmatrix} \begin{pmatrix} -2 & 7 \\ -3 & 9 \end{pmatrix} \][/tex]
Compute each element of the resulting matrix:
[tex]\[ AB = \begin{pmatrix} 3 \cdot (-2) + 2 \cdot (-3) & 3 \cdot 7 + 2 \cdot 9 \\ 7 \cdot (-2) + 5 \cdot (-3) & 7 \cdot 7 + 5 \cdot 9 \end{pmatrix} = \begin{pmatrix} -6 - 6 & 21 + 18 \\ -14 - 15 & 49 + 45 \end{pmatrix} = \begin{pmatrix} -12 & 39 \\ -29 & 94 \end{pmatrix} \][/tex]
5. Find the inverse of matrix [tex]\(AB\)[/tex]:
The determinant of [tex]\(AB\)[/tex] is:
[tex]\[ \text{det}(AB) = (-12) \cdot 94 - 39 \cdot (-29) = -1128 + 1131 = 3 \][/tex]
Hence, the inverse of [tex]\(AB\)[/tex] is:
[tex]\[ (AB)^{-1} = \frac{1}{3} \begin{pmatrix} 94 & -39 \\ 29 & -12 \end{pmatrix} = \begin{pmatrix} 31.33333333 & -13 \\ 9.66666667 & -4 \end{pmatrix} \][/tex]
6. Compute the product [tex]\(B^{-1}A^{-1}\)[/tex]:
[tex]\[ B^{-1}A^{-1} = \begin{pmatrix} 3 & -2.33333333 \\ 1 & -0.66666667 \end{pmatrix} \begin{pmatrix} 5 & -2 \\ -7 & 3 \end{pmatrix} \][/tex]
Compute each element of the resulting matrix:
[tex]\[ B^{-1}A^{-1} = \begin{pmatrix} 3 \cdot 5 + (-2.33333333) \cdot (-7) & 3 \cdot (-2) + (-2.33333333) \cdot 3 \\ 1 \cdot 5 + (-0.66666667) \cdot (-7) & 1 \cdot (-2) + (-0.66666667) \cdot 3 \end{pmatrix} \][/tex]
[tex]\[ B^{-1}A^{-1} = \begin{pmatrix} 15 + 16.33333331 & -6 - 7 \\ 5 + 4.66666669 & -2 - 2 \end{pmatrix} \][/tex]
[tex]\[ B^{-1}A^{-1} = \begin{pmatrix} 31.33333333 & -13 \\ 9.66666667 & -4 \end{pmatrix} \][/tex]
7. Conclusion:
We observe that:
[tex]\[ (AB)^{-1} = B^{-1}A^{-1} = \begin{pmatrix} 31.33333333 & -13 \\ 9.66666667 & -4 \end{pmatrix} \][/tex]
This verifies that the relation [tex]\((AB)^{-1} = B^{-1}A^{-1}\)[/tex] holds true for the given matrices [tex]\(A\)[/tex] and [tex]\(B\)[/tex].
1. Define the matrices [tex]\(A\)[/tex] and [tex]\(B\)[/tex]:
[tex]\[ A = \begin{pmatrix} 3 & 2 \\ 7 & 5 \end{pmatrix} \][/tex]
[tex]\[ B = \begin{pmatrix} -2 & 7 \\ -3 & 9 \end{pmatrix} \][/tex]
2. Find the inverse of matrix [tex]\(A\)[/tex]:
Recall that for a 2x2 matrix [tex]\( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \)[/tex], the inverse is given by:
[tex]\[ A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \][/tex]
For matrix [tex]\(A\)[/tex]:
[tex]\[ A = \begin{pmatrix} 3 & 2 \\ 7 & 5 \end{pmatrix} \][/tex]
The determinant of [tex]\(A\)[/tex] is:
[tex]\[ \text{det}(A) = 3 \cdot 5 - 2 \cdot 7 = 15 - 14 = 1 \][/tex]
Hence, the inverse of [tex]\(A\)[/tex] is:
[tex]\[ A^{-1} = \begin{pmatrix} 5 & -2 \\ -7 & 3 \end{pmatrix} \][/tex]
3. Find the inverse of matrix [tex]\(B\)[/tex]:
Similarly, for matrix [tex]\(B\)[/tex]:
[tex]\[ B = \begin{pmatrix} -2 & 7 \\ -3 & 9 \end{pmatrix} \][/tex]
The determinant of [tex]\(B\)[/tex] is:
[tex]\[ \text{det}(B) = (-2) \cdot 9 - 7 \cdot (-3) = -18 + 21 = 3 \][/tex]
Hence, the inverse of [tex]\(B\)[/tex] is:
[tex]\[ B^{-1} = \frac{1}{3} \begin{pmatrix} 9 & -7 \\ 3 & -2 \end{pmatrix} = \begin{pmatrix} 3 & -2.33333333 \\ 1 & -0.66666667 \end{pmatrix} \][/tex]
4. Calculate the product [tex]\(AB\)[/tex]:
[tex]\[ AB = \begin{pmatrix} 3 & 2 \\ 7 & 5 \end{pmatrix} \begin{pmatrix} -2 & 7 \\ -3 & 9 \end{pmatrix} \][/tex]
Compute each element of the resulting matrix:
[tex]\[ AB = \begin{pmatrix} 3 \cdot (-2) + 2 \cdot (-3) & 3 \cdot 7 + 2 \cdot 9 \\ 7 \cdot (-2) + 5 \cdot (-3) & 7 \cdot 7 + 5 \cdot 9 \end{pmatrix} = \begin{pmatrix} -6 - 6 & 21 + 18 \\ -14 - 15 & 49 + 45 \end{pmatrix} = \begin{pmatrix} -12 & 39 \\ -29 & 94 \end{pmatrix} \][/tex]
5. Find the inverse of matrix [tex]\(AB\)[/tex]:
The determinant of [tex]\(AB\)[/tex] is:
[tex]\[ \text{det}(AB) = (-12) \cdot 94 - 39 \cdot (-29) = -1128 + 1131 = 3 \][/tex]
Hence, the inverse of [tex]\(AB\)[/tex] is:
[tex]\[ (AB)^{-1} = \frac{1}{3} \begin{pmatrix} 94 & -39 \\ 29 & -12 \end{pmatrix} = \begin{pmatrix} 31.33333333 & -13 \\ 9.66666667 & -4 \end{pmatrix} \][/tex]
6. Compute the product [tex]\(B^{-1}A^{-1}\)[/tex]:
[tex]\[ B^{-1}A^{-1} = \begin{pmatrix} 3 & -2.33333333 \\ 1 & -0.66666667 \end{pmatrix} \begin{pmatrix} 5 & -2 \\ -7 & 3 \end{pmatrix} \][/tex]
Compute each element of the resulting matrix:
[tex]\[ B^{-1}A^{-1} = \begin{pmatrix} 3 \cdot 5 + (-2.33333333) \cdot (-7) & 3 \cdot (-2) + (-2.33333333) \cdot 3 \\ 1 \cdot 5 + (-0.66666667) \cdot (-7) & 1 \cdot (-2) + (-0.66666667) \cdot 3 \end{pmatrix} \][/tex]
[tex]\[ B^{-1}A^{-1} = \begin{pmatrix} 15 + 16.33333331 & -6 - 7 \\ 5 + 4.66666669 & -2 - 2 \end{pmatrix} \][/tex]
[tex]\[ B^{-1}A^{-1} = \begin{pmatrix} 31.33333333 & -13 \\ 9.66666667 & -4 \end{pmatrix} \][/tex]
7. Conclusion:
We observe that:
[tex]\[ (AB)^{-1} = B^{-1}A^{-1} = \begin{pmatrix} 31.33333333 & -13 \\ 9.66666667 & -4 \end{pmatrix} \][/tex]
This verifies that the relation [tex]\((AB)^{-1} = B^{-1}A^{-1}\)[/tex] holds true for the given matrices [tex]\(A\)[/tex] and [tex]\(B\)[/tex].
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.