Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Ask your questions and receive precise answers from experienced professionals across different disciplines. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine which equation represents the circle with the given center and diameter, we will follow a step-by-step approach:
Step 1: Identify the center and radius
- The center of the circle is given as [tex]\((-4, 9)\)[/tex].
- The diameter of the circle is given as 10 units.
To find the radius, we use the formula for the radius:
[tex]\[ \text{Radius} = \frac{\text{Diameter}}{2} \][/tex]
[tex]\[ \text{Radius} = \frac{10}{2} = 5 \][/tex]
Step 2: Write the standard form of the circle's equation
The standard form of the circle's equation is:
[tex]\[ (x - h)^2 + (y - k)^2 = r^2 \][/tex]
where [tex]\((h, k)\)[/tex] is the center and [tex]\(r\)[/tex] is the radius.
For our circle:
- The center is [tex]\((-4, 9)\)[/tex], so [tex]\(h = -4\)[/tex] and [tex]\(k = 9\)[/tex].
- The radius is [tex]\(5\)[/tex], so [tex]\(r^2 = 5^2 = 25\)[/tex].
Substituting these values into the standard form, we get:
[tex]\[ (x + 4)^2 + (y - 9)^2 = 25 \][/tex]
Step 3: Compare with the given equations
Let's go through the given equations and see which one matches our derived equation:
1. [tex]\((x - 9)^2 + (y + 4)^2 = 25\)[/tex]
2. [tex]\((x + 4)^2 + (y - 9)^2 = 25\)[/tex]
3. [tex]\((x - 9)^2 + (y + 4)^2 = 100\)[/tex]
4. [tex]\((x + 4)^2 + (y - 9)^2 = 100\)[/tex]
From the equations above, we identify that:
- Equation 2: [tex]\((x + 4)^2 + (y - 9)^2 = 25\)[/tex] matches our derived equation.
Therefore, the correct equation that represents the circle with center [tex]\((-4, 9)\)[/tex] and a diameter of 10 units is:
[tex]\[ \boxed{(x + 4)^2 + (y - 9)^2 = 25} \][/tex]
Step 1: Identify the center and radius
- The center of the circle is given as [tex]\((-4, 9)\)[/tex].
- The diameter of the circle is given as 10 units.
To find the radius, we use the formula for the radius:
[tex]\[ \text{Radius} = \frac{\text{Diameter}}{2} \][/tex]
[tex]\[ \text{Radius} = \frac{10}{2} = 5 \][/tex]
Step 2: Write the standard form of the circle's equation
The standard form of the circle's equation is:
[tex]\[ (x - h)^2 + (y - k)^2 = r^2 \][/tex]
where [tex]\((h, k)\)[/tex] is the center and [tex]\(r\)[/tex] is the radius.
For our circle:
- The center is [tex]\((-4, 9)\)[/tex], so [tex]\(h = -4\)[/tex] and [tex]\(k = 9\)[/tex].
- The radius is [tex]\(5\)[/tex], so [tex]\(r^2 = 5^2 = 25\)[/tex].
Substituting these values into the standard form, we get:
[tex]\[ (x + 4)^2 + (y - 9)^2 = 25 \][/tex]
Step 3: Compare with the given equations
Let's go through the given equations and see which one matches our derived equation:
1. [tex]\((x - 9)^2 + (y + 4)^2 = 25\)[/tex]
2. [tex]\((x + 4)^2 + (y - 9)^2 = 25\)[/tex]
3. [tex]\((x - 9)^2 + (y + 4)^2 = 100\)[/tex]
4. [tex]\((x + 4)^2 + (y - 9)^2 = 100\)[/tex]
From the equations above, we identify that:
- Equation 2: [tex]\((x + 4)^2 + (y - 9)^2 = 25\)[/tex] matches our derived equation.
Therefore, the correct equation that represents the circle with center [tex]\((-4, 9)\)[/tex] and a diameter of 10 units is:
[tex]\[ \boxed{(x + 4)^2 + (y - 9)^2 = 25} \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.