Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

Amber is solving the inequality [tex]\(|x+6| - 12 \ \textless \ 13\)[/tex] by graphing. Which equations should Amber graph?

A. [tex]\(y_1 = |x+6|, y_2 = 25\)[/tex]
B. [tex]\(y_1 = x+6, y_2 = 25\)[/tex]
C. [tex]\(y_1 = |x+6|, y_2 = 13\)[/tex]
D. [tex]\(y_1 = x+6, y_2 = 13\)[/tex]


Sagot :

To solve the inequality [tex]\( |x+6| - 12 < 13 \)[/tex] by graphing, Amber needs to follow these steps:

1. First, simplify the inequality:

[tex]\( |x+6| - 12 < 13 \)[/tex]

Add 12 to both sides to isolate the absolute value expression:

[tex]\( |x+6| - 12 + 12 < 13 + 12 \)[/tex]

Simplifies to:

[tex]\( |x+6| < 25 \)[/tex]

2. Next, identify the key components to graph:

To convert this inequality into a graphical form, Amber needs to consider the following:

- The absolute value function [tex]\( y_1 = |x + 6| \)[/tex].
- The constant value [tex]\( y_2 = 25 \)[/tex].

3. Graph the equations:

Therefore, the equations Amber should graph are:

[tex]\[ y_1 = |x + 6| \][/tex]

[tex]\[ y_2 = 25 \][/tex]

By graphing these two equations, Amber can visually interpret the region where [tex]\( |x + 6| < 25 \)[/tex].

Thus, the correct answer is:
[tex]\[ y_1 = |x + 6|, y_2 = 25 \][/tex]