Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the center of the circle given by the equation [tex]\( x^2 + y^2 + 4x - 8y + 11 = 0 \)[/tex], we need to rewrite the equation in the standard form of a circle's equation, [tex]\((x - h)^2 + (y - k)^2 = r^2\)[/tex], where [tex]\((h, k)\)[/tex] is the center of the circle and [tex]\(r\)[/tex] is the radius.
1. Rewrite the given equation and group the [tex]\(x\)[/tex] and [tex]\(y\)[/tex] terms:
[tex]\[ x^2 + y^2 + 4x - 8y + 11 = 0 \][/tex]
2. Complete the square for the [tex]\(x\)[/tex]-terms:
[tex]\[ x^2 + 4x \][/tex]
To complete the square, add and subtract [tex]\(4\)[/tex] inside the equation:
[tex]\[ x^2 + 4x + 4 - 4 = 0 \][/tex]
Factorize the trinomial:
[tex]\[ (x + 2)^2 - 4 \][/tex]
3. Complete the square for the [tex]\(y\)[/tex]-terms:
[tex]\[ y^2 - 8y \][/tex]
To complete the square, add and subtract [tex]\(16\)[/tex] inside the equation:
[tex]\[ y^2 - 8y + 16 - 16 = 0 \][/tex]
Factorize the trinomial:
[tex]\[ (y - 4)^2 - 16 \][/tex]
4. Substitute the completed squares back into the original equation:
[tex]\[ (x + 2)^2 - 4 + (y - 4)^2 - 16 + 11 = 0 \][/tex]
5. Simplify the equation:
[tex]\[ (x + 2)^2 + (y - 4)^2 - 9 = 0 \][/tex]
[tex]\[ (x + 2)^2 + (y - 4)^2 = 9 \][/tex]
Now, the equation is in the standard form, [tex]\((x - h)^2 + (y - k)^2 = r^2\)[/tex], where [tex]\( h = -2 \)[/tex] and [tex]\( k = 4 \)[/tex].
Therefore, the center of the circle is [tex]\((-2, 4)\)[/tex].
The correct answer is:
[tex]\((-2, 4)\)[/tex]
1. Rewrite the given equation and group the [tex]\(x\)[/tex] and [tex]\(y\)[/tex] terms:
[tex]\[ x^2 + y^2 + 4x - 8y + 11 = 0 \][/tex]
2. Complete the square for the [tex]\(x\)[/tex]-terms:
[tex]\[ x^2 + 4x \][/tex]
To complete the square, add and subtract [tex]\(4\)[/tex] inside the equation:
[tex]\[ x^2 + 4x + 4 - 4 = 0 \][/tex]
Factorize the trinomial:
[tex]\[ (x + 2)^2 - 4 \][/tex]
3. Complete the square for the [tex]\(y\)[/tex]-terms:
[tex]\[ y^2 - 8y \][/tex]
To complete the square, add and subtract [tex]\(16\)[/tex] inside the equation:
[tex]\[ y^2 - 8y + 16 - 16 = 0 \][/tex]
Factorize the trinomial:
[tex]\[ (y - 4)^2 - 16 \][/tex]
4. Substitute the completed squares back into the original equation:
[tex]\[ (x + 2)^2 - 4 + (y - 4)^2 - 16 + 11 = 0 \][/tex]
5. Simplify the equation:
[tex]\[ (x + 2)^2 + (y - 4)^2 - 9 = 0 \][/tex]
[tex]\[ (x + 2)^2 + (y - 4)^2 = 9 \][/tex]
Now, the equation is in the standard form, [tex]\((x - h)^2 + (y - k)^2 = r^2\)[/tex], where [tex]\( h = -2 \)[/tex] and [tex]\( k = 4 \)[/tex].
Therefore, the center of the circle is [tex]\((-2, 4)\)[/tex].
The correct answer is:
[tex]\((-2, 4)\)[/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.