At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

What is the center of a circle whose equation is [tex]$x^2 + y^2 + 4x - 8y + 11 = 0$[/tex]?

A. [tex](-2, 4)[/tex]
B. [tex](-4, 8)[/tex]
C. [tex](2, -4)[/tex]
D. [tex](4, -8)[/tex]


Sagot :

To determine the center of the circle given by the equation [tex]\( x^2 + y^2 + 4x - 8y + 11 = 0 \)[/tex], we need to rewrite the equation in the standard form of a circle's equation, [tex]\((x - h)^2 + (y - k)^2 = r^2\)[/tex], where [tex]\((h, k)\)[/tex] is the center of the circle and [tex]\(r\)[/tex] is the radius.

1. Rewrite the given equation and group the [tex]\(x\)[/tex] and [tex]\(y\)[/tex] terms:
[tex]\[ x^2 + y^2 + 4x - 8y + 11 = 0 \][/tex]

2. Complete the square for the [tex]\(x\)[/tex]-terms:
[tex]\[ x^2 + 4x \][/tex]
To complete the square, add and subtract [tex]\(4\)[/tex] inside the equation:
[tex]\[ x^2 + 4x + 4 - 4 = 0 \][/tex]
Factorize the trinomial:
[tex]\[ (x + 2)^2 - 4 \][/tex]

3. Complete the square for the [tex]\(y\)[/tex]-terms:
[tex]\[ y^2 - 8y \][/tex]
To complete the square, add and subtract [tex]\(16\)[/tex] inside the equation:
[tex]\[ y^2 - 8y + 16 - 16 = 0 \][/tex]
Factorize the trinomial:
[tex]\[ (y - 4)^2 - 16 \][/tex]

4. Substitute the completed squares back into the original equation:
[tex]\[ (x + 2)^2 - 4 + (y - 4)^2 - 16 + 11 = 0 \][/tex]

5. Simplify the equation:
[tex]\[ (x + 2)^2 + (y - 4)^2 - 9 = 0 \][/tex]
[tex]\[ (x + 2)^2 + (y - 4)^2 = 9 \][/tex]

Now, the equation is in the standard form, [tex]\((x - h)^2 + (y - k)^2 = r^2\)[/tex], where [tex]\( h = -2 \)[/tex] and [tex]\( k = 4 \)[/tex].

Therefore, the center of the circle is [tex]\((-2, 4)\)[/tex].

The correct answer is:
[tex]\((-2, 4)\)[/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.