Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine the Cartesian product [tex]\( A \times B \)[/tex] where [tex]\( A = \{2, 5, 7, 8\} \)[/tex] and [tex]\( B = \{1, 5, 7\} \)[/tex], we follow these steps:
1. The Cartesian product [tex]\( A \times B \)[/tex] is defined as the set of all ordered pairs [tex]\((a, b)\)[/tex] where [tex]\( a \in A \)[/tex] and [tex]\( b \in B \)[/tex].
2. We produce each ordered pair [tex]\((a, b)\)[/tex] by taking each element [tex]\( a \)[/tex] from set [tex]\( A \)[/tex] and pairing it with each element [tex]\( b \)[/tex] from set [tex]\( B \)[/tex].
Let’s proceed with the calculations step by step as follows:
- For [tex]\( a = 2 \)[/tex]:
- Pair with [tex]\( b = 1 \)[/tex] to get [tex]\((2, 1)\)[/tex].
- Pair with [tex]\( b = 5 \)[/tex] to get [tex]\((2, 5)\)[/tex].
- Pair with [tex]\( b = 7 \)[/tex] to get [tex]\((2, 7)\)[/tex].
- For [tex]\( a = 5 \)[/tex]:
- Pair with [tex]\( b = 1 \)[/tex] to get [tex]\((5, 1)\)[/tex].
- Pair with [tex]\( b = 5 \)[/tex] to get [tex]\((5, 5)\)[/tex].
- Pair with [tex]\( b = 7 \)[/tex] to get [tex]\((5, 7)\)[/tex].
- For [tex]\( a = 7 \)[/tex]:
- Pair with [tex]\( b = 1 \)[/tex] to get [tex]\((7, 1)\)[/tex].
- Pair with [tex]\( b = 7 \)[/tex] to get [tex]\((7, 5)\)[/tex].
- Pair with [tex]\( b = 8 \)[/tex] to get [tex]\((7, 7)\)[/tex].
- For [tex]\( a = 8 \)[/tex]:
- Pair with [tex]\( b = 1 \)[/tex] to get [tex]\((8, 1)\)[/tex].
- Pair with [tex]\( b = 5 \)[/tex] to get [tex]\((8, 5)\)[/tex].
- Pair with [tex]\( b = 7 \)[/tex] to get [tex]\((8, 7)\)[/tex].
Combining all these ordered pairs, we get:
[tex]\[ A \times B = \{(2, 1), (2, 5), (2, 7), (5, 1), (5, 5), (5, 7), (7, 1), (7, 5), (7, 7), (8, 1), (8, 5), (8, 7)\} \][/tex]
So, the Cartesian product [tex]\( A \times B \)[/tex] is:
[tex]\[ \{(2, 1), (2, 5), (2, 7), (5, 1), (5, 5), (5, 7), (7, 1), (7, 5), (7, 7), (8, 1), (8, 5), (8, 7)\}. \][/tex]
This is the complete set of ordered pairs that forms the Cartesian product of sets [tex]\( A \)[/tex] and [tex]\( B \)[/tex].
1. The Cartesian product [tex]\( A \times B \)[/tex] is defined as the set of all ordered pairs [tex]\((a, b)\)[/tex] where [tex]\( a \in A \)[/tex] and [tex]\( b \in B \)[/tex].
2. We produce each ordered pair [tex]\((a, b)\)[/tex] by taking each element [tex]\( a \)[/tex] from set [tex]\( A \)[/tex] and pairing it with each element [tex]\( b \)[/tex] from set [tex]\( B \)[/tex].
Let’s proceed with the calculations step by step as follows:
- For [tex]\( a = 2 \)[/tex]:
- Pair with [tex]\( b = 1 \)[/tex] to get [tex]\((2, 1)\)[/tex].
- Pair with [tex]\( b = 5 \)[/tex] to get [tex]\((2, 5)\)[/tex].
- Pair with [tex]\( b = 7 \)[/tex] to get [tex]\((2, 7)\)[/tex].
- For [tex]\( a = 5 \)[/tex]:
- Pair with [tex]\( b = 1 \)[/tex] to get [tex]\((5, 1)\)[/tex].
- Pair with [tex]\( b = 5 \)[/tex] to get [tex]\((5, 5)\)[/tex].
- Pair with [tex]\( b = 7 \)[/tex] to get [tex]\((5, 7)\)[/tex].
- For [tex]\( a = 7 \)[/tex]:
- Pair with [tex]\( b = 1 \)[/tex] to get [tex]\((7, 1)\)[/tex].
- Pair with [tex]\( b = 7 \)[/tex] to get [tex]\((7, 5)\)[/tex].
- Pair with [tex]\( b = 8 \)[/tex] to get [tex]\((7, 7)\)[/tex].
- For [tex]\( a = 8 \)[/tex]:
- Pair with [tex]\( b = 1 \)[/tex] to get [tex]\((8, 1)\)[/tex].
- Pair with [tex]\( b = 5 \)[/tex] to get [tex]\((8, 5)\)[/tex].
- Pair with [tex]\( b = 7 \)[/tex] to get [tex]\((8, 7)\)[/tex].
Combining all these ordered pairs, we get:
[tex]\[ A \times B = \{(2, 1), (2, 5), (2, 7), (5, 1), (5, 5), (5, 7), (7, 1), (7, 5), (7, 7), (8, 1), (8, 5), (8, 7)\} \][/tex]
So, the Cartesian product [tex]\( A \times B \)[/tex] is:
[tex]\[ \{(2, 1), (2, 5), (2, 7), (5, 1), (5, 5), (5, 7), (7, 1), (7, 5), (7, 7), (8, 1), (8, 5), (8, 7)\}. \][/tex]
This is the complete set of ordered pairs that forms the Cartesian product of sets [tex]\( A \)[/tex] and [tex]\( B \)[/tex].
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.