Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To solve the equation [tex]\(\sin(2x) = 0\)[/tex], follow this step-by-step process:
1. Identify the solutions to the inner function:
[tex]\[ \sin(2x) = 0 \][/tex]
The sine function equals zero at integer multiples of [tex]\(\pi\)[/tex]. Therefore, we can write:
[tex]\[ 2x = n\pi \quad \text{for} \quad n \in \mathbb{Z} \][/tex]
2. Solve for [tex]\(x\)[/tex]:
Divide both sides of the equation by 2 to isolate [tex]\(x\)[/tex]:
[tex]\[ x = \frac{n\pi}{2} \quad \text{for} \quad n \in \mathbb{Z} \][/tex]
3. List the specific solutions:
To find particular values, consider:
- For [tex]\( n = 0 \)[/tex]:
[tex]\[ x = \frac{0 \cdot \pi}{2} = 0 \][/tex]
- For [tex]\( n = 1 \)[/tex]:
[tex]\[ x = \frac{1 \cdot \pi}{2} = \frac{\pi}{2} \][/tex]
Thus, the specific solutions for [tex]\(x\)[/tex] within one period of the sine function (i.e., between 0 and [tex]\(\pi\)[/tex]) are:
[tex]\[ x = 0 \quad \text{and} \quad x = \frac{\pi}{2} \][/tex]
Hence, [tex]\(x\)[/tex] can be [tex]\(0\)[/tex] or [tex]\(\frac{\pi}{2}\)[/tex] as specific solutions. The general solution, considering all integer multiples, can be written as:
[tex]\[ x = \frac{n\pi}{2} \quad \text{for} \quad n \in \mathbb{Z}. \][/tex]
1. Identify the solutions to the inner function:
[tex]\[ \sin(2x) = 0 \][/tex]
The sine function equals zero at integer multiples of [tex]\(\pi\)[/tex]. Therefore, we can write:
[tex]\[ 2x = n\pi \quad \text{for} \quad n \in \mathbb{Z} \][/tex]
2. Solve for [tex]\(x\)[/tex]:
Divide both sides of the equation by 2 to isolate [tex]\(x\)[/tex]:
[tex]\[ x = \frac{n\pi}{2} \quad \text{for} \quad n \in \mathbb{Z} \][/tex]
3. List the specific solutions:
To find particular values, consider:
- For [tex]\( n = 0 \)[/tex]:
[tex]\[ x = \frac{0 \cdot \pi}{2} = 0 \][/tex]
- For [tex]\( n = 1 \)[/tex]:
[tex]\[ x = \frac{1 \cdot \pi}{2} = \frac{\pi}{2} \][/tex]
Thus, the specific solutions for [tex]\(x\)[/tex] within one period of the sine function (i.e., between 0 and [tex]\(\pi\)[/tex]) are:
[tex]\[ x = 0 \quad \text{and} \quad x = \frac{\pi}{2} \][/tex]
Hence, [tex]\(x\)[/tex] can be [tex]\(0\)[/tex] or [tex]\(\frac{\pi}{2}\)[/tex] as specific solutions. The general solution, considering all integer multiples, can be written as:
[tex]\[ x = \frac{n\pi}{2} \quad \text{for} \quad n \in \mathbb{Z}. \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.